
SymmetricDS 2 User Guide

v2.2

Copyright © 2007 - 2010 Eric Long, Chris Henson, Mark Hanes, Greg Wilmer

Permission to use, copy, modify, and distribute the SymmetricDS 2 User Guide Version 2.2 for any purpose and
without fee is hereby granted in perpetuity, provided that the above copyright notice and this paragraph appear

in all copies.

Table of Contents
Preface .. vi
1. Introduction ... 1

1.1. What is SymmetricDS? .. 1
1.2. Background .. 1
1.3. SymmetricDS Features .. 2

1.3.1. Notification Schemes .. 2
1.3.2. Two-Way Table Synchronization ... 2
1.3.3. Data Channels ... 2
1.3.4. Transaction Awareness ... 3
1.3.5. Data Filtering and Rerouting .. 3
1.3.6. HTTP(S) Transport ... 3
1.3.7. Remote Management .. 3

1.4. System Requirements ... 4
1.5. What's new in SymmetricDS 2 .. 4

2. Hands-on Tutorial ... 7
2.1. Installing SymmetricDS ... 8
2.2. Creating and Populating Your Databases .. 9
2.3. Starting SymmetricDS ... 10
2.4. Registering a Node ... 11
2.5. Sending an Initial Load .. 11
2.6. Pulling Data ... 11
2.7. Pushing Data .. 12
2.8. Verifying Outgoing Batches .. 12
2.9. Verifying Incoming Batches .. 13

3. Planning an Implementation ... 15
3.1. Identifying Nodes ... 15
3.2. Organizing Nodes .. 15
3.3. Defining Node Groups ... 18
3.4. Linking Nodes .. 19
3.5. Choosing Data Channels .. 19
3.6. Defining Data Changes to be Captured and Routed .. 20

3.6.1. Defining Triggers .. 20
3.6.2. Defining Routers ... 21
3.6.3. Mapping Triggers to Routers .. 22

3.6.3.1. Planning Initial Loads .. 22
3.6.3.2. Circular References and "Ping Back" .. 22

3.6.4. Planning for Registering Nodes .. 22
4. Configuration .. 24

4.1. Node Properties .. 24
4.2. Node ... 25
4.3. Node Group .. 26
4.4. Node Group Link ... 26
4.5. Channel .. 27
4.6. Triggers and Routers .. 27

Symmetric DS v2.2 ii

4.6.1. Trigger ... 28
4.6.2. Router .. 28

4.6.2.1. Default Router .. 29
4.6.2.2. Column Match Router .. 29
4.6.2.3. Lookup Table Router ... 31
4.6.2.4. Relational Router ... 32
4.6.2.5. Scripted Router .. 33

4.6.3. Trigger / Router Mappings .. 34
4.6.3.1. Initial Load ... 35
4.6.3.2. Dead Triggers ... 36
4.6.3.3. Enabling "Ping Back" .. 37

4.7. Opening Registration ... 37
5. Advanced Topics .. 38

5.1. Advanced Synchronization .. 38
5.1.1. Bi-Directional Synchronization .. 38
5.1.2. Multi-Tiered Synchronization ... 38

5.1.2.1. Registration Redirect ... 39
5.2. Jobs .. 39

5.2.1. Route Job .. 40
5.2.1.1. Overview .. 41
5.2.1.2. Data Gaps ... 41

5.2.2. Controlling Synchronization Frequency ... 42
5.2.3. Sync Triggers Job ... 42

5.3. JMS Publishing .. 43
5.4. Deployment Options .. 45

5.4.1. Web Archive ... 46
5.4.2. Standalone ... 46
5.4.3. Embedded ... 47

5.5. Running SymmetricDS as a Service .. 47
5.5.1. Running as a Windows Service .. 47
5.5.2. Running as a *nix Service ... 48

5.6. Clustering ... 49
5.7. Encrypted Passwords ... 50
5.8. Secure Transport .. 50

5.8.1. Sym Launcher ... 50
5.8.2. Tomcat .. 50
5.8.3. Keystores ... 51
5.8.4. Generating Keys .. 51

5.9. Basic Authentication .. 52
5.10. IP Filtering ... 52

5.10.1. CIDR Filter ... 53
5.10.2. Literal Filter .. 53
5.10.3. Wildcarding ... 53
5.10.4. Range Filters ... 54
5.10.5. Inner workings .. 54
5.10.6. Configuration .. 54

6. Extending SymmetricDS .. 56
6.1. IParameterFilter ... 56
6.2. IDataLoaderFilter ... 57

SymmetricDS 2 User Guide

Symmetric DS v2.2 iii

6.3. ITableColumnFilter .. 58
6.4. IBatchListener .. 58
6.5. IAcknowledgeEventListener .. 58
6.6. IReloadListener .. 58
6.7. IExtractorFilter ... 58
6.8. ISyncUrlExtension ... 59
6.9. INodeIdGenerator .. 59
6.10. ITriggerCreationListener ... 59
6.11. IBatchAlgorithm .. 59
6.12. IDataRouter .. 59
6.13. IHeartbeatListener .. 59
6.14. IOfflineClientListener .. 59
6.15. IOfflineServerListener ... 59
6.16. INodePasswordFilter .. 60
6.17. IServletExtension ... 60

7. Administration .. 61
7.1. Solving Synchronization Issues ... 61

7.1.1. Analyzing the Issue ... 61
7.1.2. Resolving the Issue ... 62

7.2. Changing Triggers ... 63
7.3. Changing Configuration ... 64
7.4. Logging Configuration ... 64
7.5. Java Management Extensions .. 64
7.6. Temporary Files ... 65
7.7. Database Purging ... 65

A. Data Model ... 67
A.1. NODE .. 68
A.2. NODE_SECURITY .. 69
A.3. NODE_IDENTITY ... 70
A.4. NODE_GROUP .. 70
A.5. NODE_GROUP_LINK .. 70
A.6. NODE_HOST ... 71
A.7. NODE_HOST_CHANNEL_STATS .. 72
A.8. NODE_HOST_STATS ... 73
A.9. NODE_HOST_JOB_STATS .. 74
A.10. CHANNEL .. 74
A.11. NODE_CHANNEL_CTL ... 75
A.12. NODE_GROUP_CHANNEL_WINDOW ... 76
A.13. TRIGGER ... 76
A.14. ROUTER ... 78
A.15. TRIGGER_ROUTER ... 79
A.16. PARAMETER .. 79
A.17. REGISTRATION_REDIRECT .. 80
A.18. REGISTRATION_REQUEST .. 80
A.19. TRIGGER_HIST .. 81
A.20. DATA .. 82
A.21. DATA_REF .. 83
A.22. DATA_GAP .. 83
A.23. DATA_EVENT .. 84

SymmetricDS 2 User Guide

Symmetric DS v2.2 iv

A.24. OUTGOING_BATCH .. 84
A.25. INCOMING_BATCH ... 86
A.26. LOCK .. 87

B. Parameters .. 89
B.1. Startup Parameters ... 89
B.2. Runtime Parameters .. 92

C. Database Notes ... 96
C.1. Oracle .. 96
C.2. MySQL .. 97
C.3. PostgreSQL ... 98
C.4. MS SQL Server ... 99
C.5. HSQLDB ... 99
C.6. H2 .. 99
C.7. Apache Derby .. 99
C.8. IBM DB2 ... 99
C.9. Firebird .. 100
C.10. Informix ... 100

D. Data Format .. 102
E. Version Numbering .. 104

SymmetricDS 2 User Guide

Symmetric DS v2.2 v

Preface
SymmetricDS is an open-source, web-enabled, database independent, data synchronization software
application. It uses web and database technologies to replicate tables between relational databases in near
real time. The software was designed to scale for a large number of databases, work across
low-bandwidth connections, and withstand periods of network outages.

This User Guide introduces SymmetricDS and its uses for data synchronization. It is intended for users
who want to be quickly familiarized with the software, configure it, and use its many features. This
version of the guide was generated on 2011-05-17 at 14:57:43.

Symmetric DS v2.2 vi

Chapter 1. Introduction
This User Guide will introduce both basic and advanced concepts in the configuration of SymmetricDS.
By the end of this chapter, you will have a better understanding of SymmetricDS' capabilities, and many
of its basic concepts.

1.1. What is SymmetricDS?

SymmetricDS is an asynchronous data replication software package that supports multiple subscribers
and bi-directional synchronization. It uses web and database technologies to replicate tables between
relational databases, in near real time if desired. The software was designed to scale for a large number of
databases, work across low-bandwidth connections, and withstand periods of network outage. The
software can be installed as a standalone process, as a web application in a Java application server, or it
can be embedded into another Java application.

A single installation of SymmetricDS attached to a target database is called a node. A node is initialized
by a properties file and is configured by inserting configuration data into a series of database tables. It
then creates database triggers on the application tables to be synchronized so that database events are
captured for delivery to other SymmetricDS nodes.

In most databases, the transaction id is also captured by the database triggers so that the insert, update,
and delete events can be replicated transactionally via the transport layer to other nodes. The transport
layer is typically a CSV protocol over HTTP or HTTPS.

SymmetricDS supports synchronization across different database platforms through the concept of
Database Dialects. A Database Dialect is an abstraction layer that SymmetricDS uses to insulate the main
synchronization logic from database-specific implementation details.

SymmetricDS is extendable through extension points. Extension points are custom, reusable Java code
that are configured via XML. Extension points hook into key points in the life-cycle of a synchronization
to allow custom behavior to be injected. Extension points allow custom behavior such as: publishing data
to other sources, transforming data, and taking different actions based on the content or status of a
synchronization.

1.2. Background

The idea of SymmetricDS was born from a real-world need. Several of the original developers were,
several years ago, implementing a commercial Point of Sale (POS) system for a large retailer. The
development team came to the conclusion that the software available for trickling back transactions to
corporate headquarters (frequently known as the 'central office' or 'general office') did not meet the
project needs. The list of project requirements made finding the ideal solution difficult:

• Sending and receiving data with up to 2000 stores during peak holiday loads.

• Supporting one database platform at the store and a different one at the central office.

Symmetric DS v2.2 1

• Synchronizing some data in one direction, and other data in both directions.

• Filtering out sensitive data and re-routing it to a protected database.

• Preparing the store database with an initial load of data from the central office.

The team ultimately created a custom solution that met the requirements and led to a successful project.
From this work came the knowledge and experience that SymmetricDS benefits from today.

1.3. SymmetricDS Features

At a high level, SymmetricDS comes with a number of features that you are likely to need or want when
doing data synchronization. A majority of these features were created as a direct result of real-world use
of SymmetricDS in production settings.

1.3.1. Notification Schemes

After a change to the database is recorded, the SymmetricDS nodes interested in the change are notified.
Change notification is configured to perform either a push (trickle-back) or a pull (trickle-poll) of data.
When several nodes target their changes to a central node, it is efficient to push the changes instead of
waiting for the central node to pull from each source node. If the network configuration protects a node
with a firewall, a pull configuration could allow the node to receive data changes that might otherwise be
blocked using push. The frequency of the change notification is configurable and defaults to once per
minute.

1.3.2. Two-Way Table Synchronization

In practice, much of the data in a typical synchronization requires synchronization in just one direction.
For example, a retail store sends its sales transactions to a central office, and the central office sends its
stock items and pricing to the store. Other data may synchronize in both directions. For example, the
retail store sends the central office an inventory document, and the central office updates the document
status, which is then sent back to the store. SymmetricDS supports bi-directional or two-way table
synchronization and avoids getting into update loops by only recording data changes outside of
synchronization.

1.3.3. Data Channels

SymmetricDS supports the concept of channels of data. Data synchronization is defined at the table (or
table subset) level, and each managed table can be assigned to a channel that helps control the flow of
data. A channel is a category of data that can be enabled, prioritized and synchronized independently of
other channels. For example, in a retail environment, users may be waiting for inventory documents to
update while a promotional sale event updates a large number of items. If processed in order, the item
updates would delay the inventory updates even though the data is unrelated. By assigning changes to the
item tables to an item channel and inventory tables' changes to an inventory channel, the changes are

Introduction

Symmetric DS v2.2 2

processed independently so inventory can get through despite the large amount of item data.
Channels are discussed in more detail in Section 3.5, Choosing Data Channels (p. 19).

1.3.4. Transaction Awareness

Many databases provide a unique transaction identifier associated with the rows that are committed
together as a transaction. SymmetricDS stores the transaction identifier, along with the data that changed,
so it can play back the transaction exactly as it occurred originally. This means the target database
maintains the same transactional integrity as its source. Support for transaction identification for
supported databases is documented in the appendix of this guide.

1.3.5. Data Filtering and Rerouting

Using SymmetricDS, data can be filtered as it is recorded, extracted, and loaded.

• Data routing is accomplished by assigning a router type to a ROUTER configuration. Routers are
responsible for identifying what target nodes captured changes should be delivered to. Custom
routers are possible by providing a class implementing IDataRouter.

• As data changes are loaded in the target database, a class implementing IDataLoaderFilter can
change the data in a column or route it somewhere else. One possible use might be to route credit
card data to a secure database and blank it out as it loads into a centralized sales database. The filter
can also prevent data from reaching the database altogether, effectively replacing the default data
loading process.

• Columns can be excluded from synchronization so they are never recorded when the table is
changed. As data changes are loaded into the target database, a class implementing IColumnFilter

can remove a column altogether from the synchronization. For example, an employee table may be
synchronized to a retail store database, but the employee's password is only synchronized on the
initial insert.

• As data changes are extracted from the source database, a class implementing the
IExtractorListener interface is called to filter data or route it somewhere else. By default,
SymmetricDS provides a handler that transforms and streams data as CSV. Optionally, an alternate
implementation may be provided to take some other action on the extracted data.

1.3.6. HTTP(S) Transport

By default, SymmetricDS uses web-based HTTP or HTTPS in a style called Representation State
Transfer (REST). It is lightweight and easy to manage. A series of filters are also provided to enforce
authentication and to restrict the number of simultaneous synchronization streams. The ITransportManager

interface allows other transports to be implemented.

1.3.7. Remote Management

Administration functions are exposed through Java Management Extensions (JMX) and can be accessed

Introduction

Symmetric DS v2.2 3

from the Java JConsole or through an application server. Functions include opening registration,
reloading data, purging old data, and viewing batches. A number of configuration and runtime properties
are available to be viewed as well.

SymmetricDS also provides functionality to send SQL events through the same synchronization
mechanism that is used to send data. The data payload can be any SQL statement. The event is processed
and acknowledged just like any other event type.

1.4. System Requirements

SymmetricDS is written in Java 5 and requires a Java SE Runtime Environment (JRE) or Java SE
Development Kit (JDK) version 5.0 or above.

Any database with trigger technology and a JDBC driver has the potential to run SymmetricDS. The
database is abstracted through a Database Dialect in order to support specific features of each database.
The following Database Dialects have been included with this release:

• MySQL version 5.0.2 and above

• Oracle version 8.1.7 and above

• PostgreSQL version 8.2.5 and above

• Sql Server 2005

• HSQLDB 1.8

• H2 1.x

• Apache Derby 10.3.2.1 and above

• IBM DB2 9.5

• Firebird 2.0 and above

See Appendix C, Database Notes (p. 96), for compatibility notes and other details for your specific
database.

1.5. What's new in SymmetricDS 2

SymmetricDS 2 builds upon the existing SymmetricDS 1.x software base and incorporates a number of
architectural changes and performance improvements. If you are brand new to SymmetricDS, you can
safely skip this section. If you have used SymmetricDS 1.x in the past, this section summarizes the key
differences you will encounter when moving to SymmetricDS 2.

The first significant architectural change involves SymmetricDS's use of triggers. In 1.x, triggers capture
and record data changes as well as the nodes to which the changes must be applied as row inserts into the

Introduction

Symmetric DS v2.2 4

DATA_EVENT table. Thus, the number of row-inserts grows linearly with the number of client nodes.
This can lead to an obvious performance issue as the number of nodes increases. In addition, the problem
is made worse at times due to synchronizing nodes updating the same DATA_EVENT table as part of the
batching process while the row-inserts are being created.

In SymmetricDS 2, triggers capture only data changes, not the node-specific details. The node-specific
row-inserts are replaced with a new routing mechanism that does both the routing and the batching of
data on one thread. Thus, the real-time inserts into DATA_EVENT by applications using synchronized
tables have been eliminated, and database performance is therefore improved. The database contention on
DATA_EVENT has also been eliminated, since the router job is the only thread inserting data into that
table. The only other access to the DATA_EVENT table is from selects by synchronizing nodes.

As a result of these changes, we gain the following benefits:

• Synchronizing client nodes will spend less time connected to a server node,

• Applications updating database tables that are being synchronized to a large number of nodes will
not degrade in performance as more nodes are added, and

• There should be almost no database contention on the data_event table, unlike the possible
contention in 1.X.

Because routing no longer takes place in the SymmetricDS database triggers, a new mechanism for
routing was needed. In SymmetricDS 1.x, the node_select expression was used for specifying the desired
data routing. It was a SQL expression that qualified the insert into DATA_EVENT from the
SymmetricDS triggers. In SymmetricDS 2 there is a new extension point called the data router. Data
routers are configured in the router table with a router_type and a router_expression. Several different
routers have been provided to serve the majority of users' routing needs, but the framework is in place for
a SymmetricDS programmer to develop domain- or application-specific routers. See Section 4.6.2, Router
(p. 28) for a complete list of provided routers.

Since the routing and capturing of data are now performed with two separate mechanisms, the two
concepts have been separated into separate configuration tables in the database, with a join table
(TRIGGER_ROUTER) specifying the relationships between routing (ROUTER) and capturing of data
(TRIGGER). This solves a long standing issue with some databases which only allow one trigger per
table. On those database platforms, we can now route data in multiple directions since we only require
one SymmetricDS trigger to capture data. This also helps performance in those scenarios, since we only
capture the data once instead of once per routing instance.

As part of the new routing job, we have introduced another new extension point to allow more flexibility
in the way data events get batched. A batch is the unit by with captured data is sent and committed on
target nodes. In SymmetricDS 2, batching is now configured on the channel configuration table. This
provides additional flexibility for batching:

• Batching can have the traditional SymmetricDS 1.x behavior of batching up to a max batch size,
but never breaking on a database transaction boundary.

• Batching can be completely tied to a database transaction. One batch per database transaction.

• Batching can ignore database transactions altogether and always batch based on a max batch size.

Introduction

Symmetric DS v2.2 5

Another significant change to note in SymmetricDS 2 is the removal of the incoming and outgoing batch
history tables. This change was made because it was found that over 95% of the time the statistics the end
user truly wanted to see were those for the most recent synchronization attempt, not to mention that the
outgoing batch history table was difficult to query. The most valuable information in the batch history
tables, the batch statistics, have been moved over to the batch tables themselves. The statistics in the
batch tables now always represent the latest synchronization attempt.

Introduction

Symmetric DS v2.2 6

Chapter 2. Hands-on Tutorial
Now that several of the features of SymmetricDS have been discussed, a quick working example of
SymmetricDS is in order. This section contains a hands-on tutorial that demonstrates how to synchronize
a sample database between two running instances of SymmetricDS. This example models a retail
business that has a central office database (called "root") and multiple retail store databases (called
"client"). For the tutorial, we will have only one "client", as shown in Figure 2.1.

Figure 2.1. Simplified Two Tiered Retail Store Tutorial Example

The root SymmetricDS instance sends changes to the client for item data, such as item number,
description, and price. The client SymmetricDS sends changes to the root for sale transaction data, such
as time of sale and items sold. The sample configuration specifies synchronization with a pull method for
the client to receive data from root, and a push method for the root to receive data from client.

This tutorial will walk you through:

1. Installing instances of SymmetricDS for the tutorial,

2. Creating separate databases for the root and client,

3. Creating sample tables for client and root and sample data for the root,

Symmetric DS v2.2 7

4. Starting SymmetricDS and registering the client with the root,

5. Sending an initial load to the client,

6. Causing a data push and data pull operation, and

7. Verifying information about the batches that were sent and received.

2.1. Installing SymmetricDS

First, we will install the SymmetricDS software and configure it with your database connection
information:

1. Download the symmetric-ds-2.x.x-server.zip file from http://www.symmetricds.org/

2. Unzip the file in any directory you choose. This will create a symmetric-ds-2.x.x-server

subdirectory, which corresponds to the version you downloaded.

3. Edit the database properties in the following property files for the root (central office) and client
(store) nodes:

• samples/root.properties

• samples/client.properties

4. Set the following properties in both files to specify how to connect to the database:

The class name for the JDBC Driver
db.driver=com.mysql.jdbc.Driver

The JDBC URL used to connect to the database
db.url=jdbc:mysql://localhost/sample

The user to login as who can create and update tables
db.user=symmetric

The password for the user to login as
db.password=secret

5. Next, set the following property in the client.properties file to specify where the root node can
be contacted:

The HTTP URL of the root node to contact for registration
registration.url=http://localhost:8080/sync

For the tutorial, the client database starts out empty, and the node is not registered. Registration
is the process where the node receives its configuration and stores it in its database. The
configuration describes which database tables to synchronize and to which nodes. When an
unregistered node starts up, it will register with the node specified by the registration URL. The

Hands-on Tutorial

Symmetric DS v2.2 8

https://sourceforge.net/projects/symmetricds/files/
http://www.symmetricds.org/

registration node centrally controls nodes on the network by allowing registration and returning
configuration. In this tutorial, the registration node is the root node, which also participates in
synchronization with other nodes.

2.2. Creating and Populating Your Databases

Important

You must first create the databases for your root and client nodes using the administration
tools provided by your database vendor. Make sure the name of the databases you create
match the settings in the properties files.

See Appendix C, Database Notes (p. 96), for compatibility with your specific database.

First, create the sample tables in the root node database, load the sample data, and load the sample
configuration.

1. Open a command prompt and navigate to the samples subdirectory of your SymmetricDS
installation.

2. Create the sample tables in the root database by executing the following command:

../bin/sym -p root.properties --run-ddl create_sample.xml

Note that the warning messages from the command are safe to ignore.

3. Next, create the SymmetricDS tables in the root node database. These tables will contain the
configuration for synchronization. The following command uses the auto-creation feature to
create all the necessary SymmetricDS system tables.

../bin/sym -p root.properties --auto-create

4. Finally, load the sample data and configuration into the root node database by executing:

../bin/sym -p root.properties --run-sql insert_sample.sql

We have now created the root database tables and populated them with sample data. Next, we create the
sample tables in the client node database to prepare it for receiving data.

1. Open a command prompt and navigate to the samples subdirectory of your SymmetricDS
installation.

2. Create the sample tables in the client database by executing:

../bin/sym -p client.properties --run-ddl create_sample.xml

Hands-on Tutorial

Symmetric DS v2.2 9

Note that the warning messages from the command are safe to ignore.

Please verify both databases by logging in and listing the tables.

1. Find the item tables that sync from root to client: item and item_selling_price.

2. Find the sales tables that sync from client to root: sale_transaction and sale_return_line_item.

3. Find the SymmetricDS system tables, which have a prefix of "sym_".

4. Validate the root item tables have sample data.

2.3. Starting SymmetricDS

Database setup and configuration for the tutorial is now complete. Time to put SymmetricDS into action.
We will now start both SymmetricDS nodes and observe the logging output.

1. Open a command prompt and navigate to the samples subdirectory of your SymmetricDS
installation.

2. Start the root node server by executing:

../bin/sym -p root.properties --port 8080 --server

The root node server starts up and creates all the triggers that were configured by the sample
configuration. It listens on port 8080 for synchronization and registration requests.

3. Start the client node server by executing:

../bin/sym -p client.properties --port 9090 --server

The client node server starts up and uses the auto-creation feature to create the SymmetricDS
system tables. It begins polling the root node in order to register. Since registration is not yet
open, the client node receives an authorization failure (HTTP response of 403).

Tip

If you want to change the port number used by SymmetricDS, you need to also set the sync.url
runtime property to match. The default value is:

sync.url=http://localhost:8080/sync

Hands-on Tutorial

Symmetric DS v2.2 10

2.4. Registering a Node

Next, we need to open registration for the client node so that it may receive its initial load of data and so
that it may receive and send data from and to the root node. There are several ways to do this. We will use
the administration feature on the root node.

1. Open a command prompt and navigate to the samples subdirectory of your SymmetricDS
installation.

2. Open registration for the client node server by executing:

../bin/sym -p root.properties --open-registration "store,1"

The registration is now opened for a node group called "store" with an external identifier of "1".
This information matches the settings in client.properties for the client node. Each node is
assigned to a node group and is given an external ID that makes sense for the application. In this
tutorial, we have retail stores that run SymmetricDS, so we named our node group "store" and
we used numeric identifiers starting with "1". More information about node groups will be
covered in the next chapter.

3. Watch the logging output of the client node to see it successfully register with the root node. The
client is configured to attempt registration once per minute. Once registered, the root and client
are enabled for synchronization!

2.5. Sending an Initial Load

Next, we will send an initial load of data to our store (that is, the client node), again using the root node
administration feature.

1. Open a command prompt and navigate to the samples subdirectory of your SymmetricDS
installation.

2. Send an initial load of data to the client node server by executing:

../bin/sym -p root.properties --reload-node 1

With this command, the root node queues up an initial load for the client node that will be sent
the next time the client performs its pull. The initial load includes data for each table that is
configured for synchronization.

3. Watch the logging output of both nodes to see the data transfer. The client is configured to pull
data from the root every minute.

2.6. Pulling Data

Hands-on Tutorial

Symmetric DS v2.2 11

Next, we will make a change to the item data in the central office (we'll add a new item), and observe the
data being pulled down to the store.

1. Open an interactive SQL session with the root database.

2. Add a new item for sale:

insert into item_selling_price (price_id, price) values (55, 0.65);

insert into item (item_id, price_id, name) values (110000055, 55, 'Soft Drink');

Once the statements are committed, the data change is captured by SymmetricDS and queued for
the client node to pull.

3. Watch the logging output of both nodes to see the data transfer. The client is configured to pull
data from the root every minute.

4. Verify that the new data arrives in the client database using another interactive SQL session.

2.7. Pushing Data

We will now simulate a sale at the store and observe how SymmetricDS pushes the sale transaction to the
central office.

1. Open an interactive SQL session with the client database.

2. Add a new sale to the client database:

insert into sale_transaction (tran_id, store, workstation, day, seq) values (1000, '1', '3',
'2007-11-01', 100);

insert into sale_return_line_item (tran_id, item_id, price, quantity) values (1000,
110000055, 0.65, 1);

Once the statements are committed, the data change is captured and queued for the client node to
push.

3. Watch the logging output of both nodes to see the data transfer. The client is configured to push
data to the root every minute.

2.8. Verifying Outgoing Batches

Now that we have pushed and pulled data, we will demonstrate how you can obtain information about
what data has been batched and sent. A batch is used for tracking and sending data changes to nodes. The
sending node creates a batch and the receiving node acknowledges it. A batch in error is retried during
synchronization attempts, but only after data changes in other channels are allowed to be sent. Channels

Hands-on Tutorial

Symmetric DS v2.2 12

are categories assigned to tables for the purpose of independent synchronization and control. Batches for
a channel are not created when a batch in the channel is in error status.

1. Open an interactive SQL session with either the root or client database.

2. Verify that the data change you made was captured:

select * from sym_data order by data_id desc;

Each row represents a row of data that was changed. The event_type is "I" for insert, "U" for
update", or "D" for delete. For insert and update, the captured data values are listed in row_data.
For update and delete, the primary key values are listed in pk_data.

3. Verify that the data change was routed to a node, using the data_id from the previous step:

select * from sym_data_event where data_id = ?;

When the batched flag is set, the data change is assigned to a batch using a batch_id that is used
to track and synchronize the data. Batches are created and assigned during a push or pull
synchronization.

4. Verify that the data change was batched, sent, and acknowledged, using the batch_id from the
previous step:

select * from sym_outgoing_batch where batch_id = ?;

A batch represents a collection of changes to be sent to a node. The batch is created during a
push or pull synchronization, when the status is set to "NE" for new. The receiving node
acknowledges the batch with a status of "OK" for success or "ER" for error.

Understanding these three tables, along with a fourth table discussed in the next section, is key to
diagnosing any synchronizaiton issues you might encounter. As you work with SymmetricDS, either
when experimenting or starting to use SymmetricDS on your own data, spend time monitoring these
tables to better understand how SymmetricDS works.

2.9. Verifying Incoming Batches

The receiving node keeps track of the batches it acknowledges and records statistics about loading the
data. Duplicate batches are skipped by default, but this behavior can be changed with the
incoming.batches.skip.duplicates runtime property.

1. Open an interactive SQL session with either the root or client database.

2. Verify that the batch was acknowledged, using a batch_id from the previous section:

select * from sym_incoming_batch where batch_id = ?;

A batch represents a collection of changes loaded by the node. The sending node that created the
batch is recorded. The status is either "OK" for success or "ER" for error.

Hands-on Tutorial

Symmetric DS v2.2 13

Hands-on Tutorial

Symmetric DS v2.2 14

Chapter 3. Planning an Implementation
In the previous Chapter we presented a high level introduction to some basic concepts in SymmetricDS,
some of the high-level features, and a tutorial demonstrating a basic, working example of SymmetricDS
in action. This chapter will focus on the key considerations and decisions one must make when planning a
SymmetricDS implementation. As needed, basic concepts will be reviewed or introduced throughout this
Chapter. By the end of the chapter you should be able to proceed forward and implement your planned
design. This Chapter will intentionally avoid discussing the underlying database tables that capture the
configuration resulting from your analysis and design process. Implementation of your design, along with
discussion of the tables backing each concept, is covered in Chapter 4, Configuration (p. 24).

When needed, we will rely on an example of a typical use of SymmetricDS in retail situations. This
example retail deployment of SymmetricDS might include many point-of-sale workstations located at
stores that may have intermittent network connection to a central location. These workstations might have
point-sale-software that uses a local relational database. The database is populated with items, prices and
tax information from a centralized database. The point-of-sale software looks up item information from
the local database and also saves sale information to the same database. The persisted sales need to be
propagated back to the centralized database.

3.1. Identifying Nodes

A node is a single instance of SymmetricDS. It can be thought of as a proxy for a database which
manages the synchronization of data to and/or from its database. For our example retail application, the
following would be SymmetricDS nodes:

• Each point-of-sale workstation.

• The central office database server.

Each node of SymmetricDS can be either embedded in another application, run stand-alone, or even run
in the background as a service. If desired, nodes can be clustered to help disperse load if they send and/or
receive large volumes of data to or from a large number of nodes.

Individual nodes are easy to identify when planning your implementation. If a database exists in your
domain that needs to send or receive data, there needs to be a corresponding SymmetricDS instance (a
node) responsible for managing the synchronization for that database.

3.2. Organizing Nodes

Nodes in SymmetricDS are organized into an overall node network, with connections based on what data
needs to be synchronized where. The exact organization of your nodes will be very specific to your
synchronization goals. As a starting point, lay out your nodes in diagram form and draw connections
between nodes to represent cases in which data is to flow in some manner. Think in terms of what data is
needed at which node, what data is in common to more than one node, etc. If it is helpful, you could also
show data flow into and out of external systems. As you will discover later, SymmetricDS can publish
data changes from a node as well using JMS.

Symmetric DS v2.2 15

Our retail example, as shown in Figure 3.1, represents a tree hierarchy with a single central office node
connected by lines to one or more children nodes (the POS workstations). Information flows from the
central office node to an individual register and vice versa, but never flows between registers.

Figure 3.1. Two Tiered Retail Store Deployment Example

More complex organization can also be used. Consider, for example, if the same retail example is
expanded to include store servers in each store to perform tasks such as opening the store for the day,
reconciling registers, assigning employees, etc. One approach to this new configuration would be to
create a three-tier hierarchy (see Figure 3.2). The highest tier, the centralized database, connects with
each store server's database. The store servers, in turn, communicate with the individual point-of-sale
workstations at the store. In this way data from each register could be accumulated at the store server,
then sent on to the central office. Similarly, data from the central office can be staged in the store server
and then sent on to each register, filtering the register's data based on which register it is.

Planning an Implementation

Symmetric DS v2.2 16

Figure 3.2. Three Tiered, In-Store Server, Retail Store Deployment Example

One final example, show in Figure 3.3, again extending our original two-tier retail use case, would be to
organize stores by "region" in the world. This three tier architecture would introduce new regional servers
(and corresponding regional databases) which would consolidate information specific to stores the
regional server is responsible for. The tiers in this case are therefore the central office server, regional
servers, and individual store registers.

Planning an Implementation

Symmetric DS v2.2 17

Figure 3.3. Three Tiered, Regional Server, Retail Store Deployment Example

These are just three common examples of how one might organize nodes in SymmetricDS. While the
examples above were for the retail industry, the organization, they could apply to a variety of application
domains.

3.3. Defining Node Groups

Once the organization of your SymmetricDS nodes has been chosen, you will need to group your nodes
based on which nodes share common functionality. This is accomplished in SymmetricDS through the
concept of a Node Group. Frequently, an individual tier in your network will represent one Node Group.
Much of SymmetricDS' functionality is specified by Node Group and not an individual node. For

Planning an Implementation

Symmetric DS v2.2 18

example, when it comes time to decide where to route data captured by SymmetricDS, the routing is
configured by Node Group.

For the examples above, we might define Node Groups of:

• "workstation", to represent each point-of-sale workstation

• "corp" or "central-office" to represent the centralized node.

• "store" to represent the store server that interacts with store workstations and sends and receives
data from a central office server.

• "region" to represent the a regional server that interacts with store workstations and sends and
receives data from a central office server.

Considerable thought should be given to how you define the Node Groups. Groups should be created for
each set of nodes that synchronize common tables in a similar manner. Also, give your Node Groups
meaningful names, as they will appear in many, many places in your implementation of SymmetricDS.

Note that there are other mechanisms in SymmetricDS to route to individual nodes or smaller subsets of
nodes within a Node Group, so do not choose Node Groups based on needing only subsets of data at
specific nodes. For example, although you could, you would not want to create a Node Group for each
store even though different tax rates need to be routed to each store. Each store needs to synchronize the
same tables to the same groups, so 'store' would be a good choice for a Node Group.

3.4. Linking Nodes

Now that Node Groups have been chosen, the next step in planning is to document the individual links
between Node Groups. These Node Group Links establish a source Node Group, a target Node Group,
and a data event action, namely whether the data changes are pushed or pulled. The push method causes
the source Node Group to connect to the target, while a pull method causes it to wait for the target to
connect to it.

For our retail store example, there are two Node Group Links defined. For the first link, the "store" Node
Group pushes data to the "corp" central office Node Group. The second defines a "corp" to "store" link as
a pull. Thus, the store nodes will periodically pull data from the central office, but when it comes time to
send data to the central office a store node will do a push.

3.5. Choosing Data Channels

When SymmetricDS captures data changes in the database, the changes are captured in the order in which
they occur. In addition, that order is preserved when synchronizing the data to other nodes. Frequently,
however, you will have cases where you have different "types" of data with differing priorities. Some
data might, for example, need priority for synchronization despite the normal order of events. For
example, in a retail environment, users may be waiting for inventory documents to update while a
promotional sale event updates a large number of items.

SymmetricDS supports this by allowing tables being synchronized to be grouped together into Channels

Planning an Implementation

Symmetric DS v2.2 19

of data. A number of controls to the synchronization behavior of SymmetricDS are controlled at the
Channel level. For example, Channels provide a processing order when synchronizing, a limit on the
amount of data that will be batched together, and isolation from errors in other channels. By categorizing
data into channels and assigning them to TRIGGERs, the user gains more control and visibility into the
flow of data. In addition, SymmetricDS allows for synchronization to be enabled, suspended, or
scheduled by Channels as well. The frequency of synchronization can also be controlled at the channel
level.

Choosing Channels is fairly straightforward and can be changed over time, if needed. Think about the
differing "types" of data present in your application, the volume of data in the various types, etc. What
data is considered must-have and can't be delayed due to a high volume load of another type of data? For
example, you might place employee-related data, such as clocking in or out, on one channel, but sales
transactions on another. We will define which tables belong to which channels in the next sections.

Important

Be sure that, when defining Channels, all tables related by foreign keys are included in the
same channel.

3.6. Defining Data Changes to be Captured and Routed

At this point, you have designed the node-related aspects of your implementation, namely choosing
nodes, grouping the nodes based on functionality, defining which node groups send and receive data to
which others (and by what method). You have defined data Channels based on the types and priority of
data being synchronized. The largest remaining task prior to starting your implementation is to define and
document what data changes are to be captured (by defining SymmetricDS Triggers), and to decide to
which node(s) the data changes are to be routed to and under what conditions. We will also, in this
section, discuss the concept of an initial load of data into a SymmetricDS node.

3.6.1. Defining Triggers

SymmetricDS uses database triggers to capture and record changes to be synchronized to other nodes.
Based on the configuration you provide, SymmetricDS creates the needed database triggers automatically
for you. There is a great deal of flexibility in terms of defining the exact conditions under which a data
change is captured. SymmetricDS triggers are defined in a table named TRIGGER. Each trigger you
define is for a particular table associated. Each trigger can also specify:

• whether to install a trigger for updates, inserts, and/or deletes

• conditions on which an insert, update, and/or delete fires

• a list of columns that should not be synchronized from this table

• a SQL select statement that can be used to hold data needed for routing (known as External Data)

As you define your triggers, consider which data changes are relevant to your application and which ones

Planning an Implementation

Symmetric DS v2.2 20

ar not. Consider under what special conditions you might want to route data, as well. For our retail
example, we likely want to have triggers defined for updating, inserting, and deleting pricing information
in the central office so that the data can be routed down to the stores. Similarly, we need triggers on sales
transaction tables such that sales information can be sent back to the central office.

3.6.2. Defining Routers

The triggers that have been defined in the previous section only define when data changes are to be
captured for synchronization. They do not define where the data changes are to be sent to. Routers, plus a
mapping between Triggers and Routers (TRIGGER_ROUTER), define the process for determining which
nodes receive the data changes.

Before we discuss Routers and Trigger Routers, we should probably take a break and discuss the process
SymmetricDS uses to keep track of the changes and routing. As we stated, SymmetricDS relies on
auto-created database triggers to capture and record relevant data changes into a table, the DATA table.
After the data is captured, a background process chooses the nodes that the data will be synchronized to.
This is called routing and it is performed by the Routing Job. Note that the Routing Job does not actually
send any data. It just organizes and records the decisions on where to send data in a "staging" table called
DATA_EVENT and OUTGOING_BATCH.

Now we are ready to discuss Routers. The router itself is what defines the configuration of where to send
a data change. Each Router you define can be associated with or assigned to any number of Triggers
through a join table that defines the relationship. Routers are defined the SymmetricDS table named
ROUTER. For each router you define, you will need to specify:

• the target table on the destination node to route the data

• the source node group and target node group for the nodes to route the data to

• a router type and router expression

• whether to route updates, inserts, and/or deletes

For now, do not worry about the specific routing types. They will be covered later. For your design
simply make notes of the information needed and decisions to determine the list of nodes to route to. You
will find later that there is incredible flexibility and functionality available in routers. For example, you
will find you can:

• send the changes to all nodes that belong to the target node group defined in the router.

• compare old or new column values to a constant value or the value of a node's identity.

• execute a SQL expression against the database to select nodes to route to. This SQL expression can
be passed values of old and new column values.

• execute a Bean Shell expression in order to select nodes to route to. The Bean Shell expression can
use the the old and new column values.

• publish data changes directly to a messaging solution instead of transmitting changes to registered

Planning an Implementation

Symmetric DS v2.2 21

nodes. (This router must be configured manually in XML as an extension point.)

For each of your Triggers, decide which Router matches the behavior needed for that Trigger. These
Trigger Router combinations will be used to define a mapping between your Triggers and Routers when
you implement your design.

3.6.3. Mapping Triggers to Routers

The mapping between Triggers and Routers, found in the table TRIGGER_ROUTER, defines
configuration specific to a particular Trigger and Router combination.

3.6.3.1. Planning Initial Loads

SymmetricDS provides the ability to "load" or "seed" a node's database with specific sets of data from its
parent node. This concept is known as an Initial Load of data and is used to start off most synchronization
scenarios. The Trigger Router mapping defines how initial loads can occur, so now is a good time to plan
how your Initial Loads will work. Using our retail example, consider a new store being opened. Initially,
you would like to pre-populate a store database with all the item, pricing, and tax data for that specific
store. This is achieved through an initial load. A part of your planning, be sure to consider which tables, if
any, will need to be loaded initially. SymmetricDS can also perform an initial load on a table with just a
subset of data. Initial Loads are further discussed in Section 4.6.3.1, Initial Load (p. 35).

3.6.3.2. Circular References and "Ping Back"

When routing data, SymmetricDS by default checks each data change and will not route a data change
back to a node if it originated the change to begin with. This prevents the possibility of data changes
resulting in an infinite loop of changes under certain circumstances. You may find that, for some reason,
you need SymmetricDS to go ahead and send the data back to the originating node - a "ping back". As
part of the planning process, consider whether you have a special case for needing ping back. Ping Back
control is further discussed in Section 4.6.3.3, Enabling "Ping Back" (p. 37).

3.6.4. Planning for Registering Nodes

Our final step in planning an implementation of SymmetricDS involves deciding how a new node is
connected to, or registered with a parent node for the first time.

The following are some options on ways you might register nodes:

• The tutorial uses the command line utility to register each individual node.

• A JMX interface provides the same interface that the command line utility does. JMX can be
invoked programatically or via a web console.

• Both the utility and the JMX method register a node by inserting into two tables. A script can be
written to directly register nodes by directly inserting into the database.

• SymmetricDS can be configured to auto register nodes. This means that any node that asks for a

Planning an Implementation

Symmetric DS v2.2 22

registration will be given one.

Planning an Implementation

Symmetric DS v2.2 23

Chapter 4. Configuration
Chapter 3 introduced numerous concepts and the analysis and design needed to create an implementation
of SymmetricDS. This chapter re-visits each analysis step and documents how to turn a SymmetricDS
design into reality through configuration of the various SymmetricDS tables. In addition, several
advanced configuration options, not presented previously, will also be covered.

4.1. Node Properties

To get a SymmetricDS node running, it needs to be given an identity and it needs to know how to connect
to the database it will be synchronizing. A typical way to specify this is to place properties in the
symmetric.properties file. When started up, SymmetricDS reads the configuration and state from the
database. If the configuration tables are missing, they are created automatically (auto creation can be
disabled). Basic configuration is described by inserting into the following tables (the complete data model
is defined in Appendix A, Data Model (p. 67)).

• NODE_GROUP - specifies the tiers that exist in a SymmetricDS network

• NODE_GROUP_LINK - links two node groups together for synchronization

• CHANNEL - grouping and priority of synchronizations

• TRIGGER - specifies tables, channels, and conditions for which changes in the database should be
captured

• ROUTER - specifies the routers defined for synchronization, along with other routing details

• TRIGGER_ROUTER - provides mappings of routers and triggers

During start up, triggers are verified against the database, and database triggers are installed on tables that
require data changes to be captured. The Route, Pull and Push Jobs begin running to synchronize changes
with other nodes.

Each node requires properties that allow it to connect to a database and register with a parent node. To
give a node its identity, the following properties are used:

group.id
The node group that this node is a member of. Synchronization is specified between node groups,
which means you only need to specify it once for multiple nodes in the same group.

external.id
The external id for this node has meaning to the user and provides integration into the system where it
is deployed. For example, it might be a retail store number or a region number. The external id can be
used in expressions for conditional and subset data synchronization. Behind the scenes, each node has
a unique sequence number for tracking synchronization events. That makes it possible to assign the
same external id to multiple nodes, if desired.

Symmetric DS v2.2 24

sync.url
The URL where this node can be contacted for synchronization. At startup and during each heartbeat,
the node updates its entry in the database with this URL.

When a new node is first started, it is has no information about synchronizing. It contacts the registration
server in order to join the network and receive its configuration. The configuration for all nodes is stored
on the registration server, and the URL must be specified in the following property:

registration.url
The URL where this node can connect for registration to receive its configuration. The registration
server is part of SymmetricDS and is enabled as part of the deployment.

Important

Note that a registration server node is defined as one whose registration.url is either (a)
blank, or (b) identical to its sync.url.

When deploying to an application server, it is common for database connection pools to be found in the
Java naming directory (JNDI). In this case, set the following property:

db.jndi.name
The name of the database connection pool to use, which is registered in the JNDI directory tree of the
application server. It is recommended that this DataSource is NOT transactional, because
SymmetricDS will handle its own transactions.

For a deployment where the database connection pool should be created using a JDBC driver, set the
following properties:

db.driver
The class name of the JDBC driver.

db.url
The JDBC URL used to connect to the database.

db.user
The database username, which is used to login, create, and update SymmetricDS tables.

db.password
The password for the database user.

4.2. Node

A node, a single instance of SymmetricDS, is defined in the NODE table. Two other tables play a direct
role in defining a node, as well The first is NODE_IDENTITY. The only row in this table is inserted in
the database when the node first registers with a parent node. In the case of a root node, the row is

Configuration

Symmetric DS v2.2 25

entered by the user. The row is used by a node instance to determine its node identity.

The following SQL statements set up a top-level registration server as a node identified as "00000" in the
"corp" node group.

insert into SYM_NODE
(node_id, node_group_id, external_id, sync_enabled)

values
('00000', 'corp', '00000', 1);

insert into SYM_NODE_IDENTITY values ('00000');

The second table, NODE_SECURITY has rows created for each child node that registers with the node,
assuming auto-registration is enabled. If auto registration is not enabled, you must create a row in NODE
and NODE_SECURITY for the node to be able to register. You can also, with this table, manually cause
a node to re-register or do a re-initial load by setting the corresponding columns in the table itself.
Registration is discussed in more detail in Section 4.7, Opening Registration (p. 37).

4.3. Node Group

Node Groups are straightforward to configure and are defined in the NODE_GROUP table. The
following SQL statements would create node groups for "corp" and "store" based on our retail store
example.

insert into SYM_NODE_GROUP
(node_group_id, description)

values
('store', 'A retail store node');

insert into SYM_NODE_GROUP
(node_group_id, description)

values
('corp', 'A corporate node');

4.4. Node Group Link

Similarly, Node Group links are established using a data event action of 'P' for Push and 'W' for Pull
("wait"). The following SQL statements links the "corp" and "store" node groups for synchronization. It
configures the "store" nodes to push their data changes to the "corp" nodes, and the "corp" nodes to send
changes to "store" nodes by waiting for a pull.

insert into SYM_NODE_GROUP_LINK
(source_node_group, target_node_group, data_event_action)

values
('store', 'corp', 'P');

insert into SYM_NODE_GROUP_LINK

Configuration

Symmetric DS v2.2 26

(source_node_group, target_node_group, data_event_action)
values
('corp', 'store', 'W');

4.5. Channel

By categorizing data into channels and assigning them to TRIGGERs, the user gains more control and
visibility into the flow of data. In addition, SymmetricDS allows for synchronization to be enabled,
suspended, or scheduled by channels as well. The frequency of synchronization and order that data gets
synchronized is also controlled at the channel level.

The following SQL statements setup channels for a retail store. An "item" channel includes data for items
and their prices, while a "sale_transaction" channel includes data for ringing sales at a register.

insert into SYM_CHANNEL
(channel_id, processing_order, max_batch_size, max_batch_to_send,
extract_period_millis, batch_algorithm, enabled, description)

values
('item', 10, 1000, 10, 0, 'default', 1, 'Item and pricing data');

insert into SYM_CHANNEL
(channel_id, processing_order, max_batch_size, max_batch_to_send,
extract_period_millis, batch_algorithm, enabled, description)

values
('sale_transaction', 1, 1000, 10, 60000, 'transactional', 1,
'retail sale transactions from register');

Batching is the grouping of data, by channel, to be transferred and committed at the client together. There
are three different out-of-the-box batching algorithms which may be configured in the batch_algorithm
column on channel.

default
All changes that happen in a transaction are guaranteed to be batched together. Multiple transactions
will be batched and committed together until there is no more data to be sent or the max_batch_size is
reached.

transactional
Batches will map directly to database transactions. If there are many small database transactions, then
there will be many batches. The max_batch_size column has no effect.

nontransactional
Multiple transactions will be batched and committed together until there is no more data to be sent or
the max_batch_size is reached. The batch will be cut off at the max_batch_size regardless of whether
it is in the middle of a transaction.

4.6. Triggers and Routers

Configuration

Symmetric DS v2.2 27

4.6.1. Trigger

SymmetricDS captures synchronization data using database triggers. SymmetricDS' Triggers are defined
in the TRIGGER table. Each record is used by SymmetricDS when generating database triggers.
Database triggers are only generated when a trigger is associated with a ROUTER whose
source_node_group_id matches the node group id of the current node.

When determining whether a data change has occurred or not, by defalt the triggers will record a change
even if the data was updated to the same value(s) they were originally. For example, a data change will be
captured if an update of one column in a row updated the value to the same value it already was. There is
a global property, trigger.update.capture.changed.data.only.enabled (false by default), that allows you to
override this behavior. When set to true, SymmetricDS will only capture a change if the data has truly
changed (i.e., when the new column data is not equal to the old column data).

Important
The property trigger.update.capture.changed.data.only.enabled is currently only supported in
the MySQL and Oracle dialects.

The following SQL statement defines a trigger that will capture data for a table named "item" whenever
data is inserted, updated, or deleted. The trigger is assigned to a channel also called 'item'.

insert into SYM_TRIGGER
(trigger_id,source_table_name,channel_id,last_update_time,create_time)

values
('item', 'item', 'item', current_timestamp, current_timestamp);

Important

Note that many databases allow for multiple triggers of the same type to be defined. Each
database defines the order in which the triggers fire differently. If you have additional triggers
beyond those SymmetricDS installs on your table, please consult your database documentation
to determine if there will be issues with the ordering of the triggers.

4.6.2. Router

Routers provided in the base implementation currently include:

• Default Router - a router that sends all data to all nodes that belong to the target node group
defined in the router.

• Column Match Router - a router that compares old or new column values to a constant value or the
value of a node's external_id or node_id.

• Sub-select Router - a router that executes a SQL expression against the database to select nodes to
route to. This SQL expression can be passed values of old and new column values.

Configuration

Symmetric DS v2.2 28

• Bean Shell Router - a router that executes a BSH expression in order to select nodes to route to.
The BSH expression can use the the old and new column values.

• Xml Publishing Router - a router the publishes data changes directly to a messaging solution
instead of transmitting changes to registered nodes. This router must be configured manually in
XML as an extension point.

The mapping between the set of triggers and set of routers is many-to-many. This means that one trigger
can capture changes and route to multiple locations. It also means that one router can be defined an
associated with many different triggers.

4.6.2.1. Default Router

The simplest router is a router that sends all the data that is captured by its associated triggers to all the
nodes that belong to the target node group defined in the router. A router is defined as a row in the
ROUTER table. It is then linked to triggers in the TRIGGER_ROUTER table.

The following SQL statement defines a router that will send data from the 'corp' group to the 'store' group.

insert into SYM_ROUTER
(router_id, source_node_group_id, target_node_group_id,
create_time, last_update_time)

values
('corp-2-store','corp', 'store', current_timestamp, current_timestamp);

The following SQL statement maps the 'corp-2-store' router to the item trigger.

insert into SYM_TRIGGER_ROUTER
(trigger_id, router_id, initial_load_order, create_time, last_update_time)

values
('item', 'corp-2-store', 1, current_timestamp, current_timestamp);

4.6.2.2. Column Match Router

Sometimes requirements may exist that require data to be routed based on the current value or the old
value of a column in the table that is being routed. Column routers are configured by setting the
router_type column on the ROUTER table to column and setting the router_expression column to an
equality expression that represents the expected value of the column.

The first part of the expression is always the column name. The column name should always be defined
in upper case. The upper case column name prefixed by OLD_ can be used for a comparison being done
with the old column data value.

The second part of the expression can be a constant value, a token that represents another column, or a
token that represents some other SymmetricDS concept. Token values always begin with a colon (:).

Configuration

Symmetric DS v2.2 29

Consider a table that needs to be routed to all nodes in the target group only when a status column is set to
'OK.' The following SQL statement will insert a column router to accomplish that.

insert into SYM_ROUTER
(router_id, source_node_group_id, target_node_group_id, router_type,
router_expression, create_time, last_update_time)
values
('corp-2-store-ok','corp', 'store', 'column',
'STATUS=OK', current_timestamp, current_timestamp);

Consider a table that needs to be routed to all nodes in the target group only when a status column
changes values. The following SQL statement will insert a column router to accomplish that.

insert into SYM_ROUTER
(router_id, source_node_group_id, target_node_group_id, router_type,
router_expression, create_time, last_update_time)

values
('corp-2-store-status','corp', 'store', 'column',
'STATUS!=:OLD_STATUS', current_timestamp, current_timestamp);

Consider a table that needs to be routed to only nodes in the target group whose STORE_ID column
matches the external id of a node. The following SQL statement will insert a column router to accomplish
that.

insert into SYM_ROUTER
(router_id, source_node_group_id, target_node_group_id, router_type,
router_expression, create_time, last_update_time)

values
('corp-2-store-id','corp', 'store', 'column',
'STORE_ID=:EXTERNAL_ID', current_timestamp, current_timestamp);

Attributes on a NODE that can be referenced with tokens include:

• NODE_ID

• EXTERNAL_ID

• NODE_GROUP_ID

Consider a table that needs to be routed to a redirect node defined by its external id in the
REGISTRATION_REDIRECT table. The following SQL statement will insert a column router to
accomplish that.

insert into SYM_ROUTER
(router_id, source_node_group_id, target_node_group_id, router_type,
router_expression, create_time, last_update_time)

Configuration

Symmetric DS v2.2 30

values
('corp-2-store-redirect','corp', 'store', 'column',
'STORE_ID=:REDIRECT_NODE', current_timestamp, current_timestamp);

More than one column may be configured in a router_expression. When more than one column is
configured, all matches are added to the list of nodes to route to. The following is an example where the
STORE_ID column may contain the STORE_ID to route to or the constant of ALL which indicates that
all nodes should receive the update.

insert into SYM_ROUTER
(router_id, source_node_group_id, target_node_group_id, router_type,
router_expression, create_time, last_update_time)

values
('corp-2-store-multiple-matches','corp', 'store', 'column',
'STORE_ID=ALL
STORE_ID=:EXTERNAL_ID', current_timestamp, current_timestamp);

The NULL keyword may be used to check if a column is null. If the column is null, then data will be
routed to all nodes who qualify for the update. This following is an example where the STORE_ID
column is used to route to a set of nodes who have a STORE_ID equal to their EXTERNAL_ID, or to all
nodes if the STORE_ID is null.

insert into SYM_ROUTER
(router_id, source_node_group_id, target_node_group_id, router_type,
router_expression, create_time, last_update_time)

values
('corp-2-store-multiple-matches','corp', 'store', 'column',
'STORE_ID=NULL
STORE_ID=:EXTERNAL_ID', current_timestamp, current_timestamp);

4.6.2.3. Lookup Table Router

A lookup table may contain the id of the node where data needs to be routed. This could be an existing
table or an ancillary table that is added specifically for the purpose of routing data. Lookup table routers
are configured by setting the router_type column on the ROUTER table to lookuptable and setting a list of
configuration parameters in the router_expression column.

Each of the following configuration parameters are required.

LOOKUP_TABLE
This is the name of the lookup table.

KEY_COLUMN
This is the name of the column on the table that is being routed. It will be used as a key into the
lookup table.

LOOKUP_KEY_COLUMN
This is the name of the column that is the key on the lookup table.

Configuration

Symmetric DS v2.2 31

EXTERNAL_ID_COLUMN
This is the name of the column that contains the external_id of the node to route to on the lookup
table.

Note that the lookup table will be read into memory and cached for the duration of a routing pass for a
single channel.

Consider a table that needs to be routed to a specific store, but the data in the changing table only contains
brand information. In this case, the STORE table may be used as a lookup table.

insert into SYM_ROUTER
(router_id, source_node_group_id, target_node_group_id, router_type,
router_expression, create_time, last_update_time)
values
('corp-2-store-ok','corp', 'store', 'lookuptable',
'LOOKUP_TABLE=STORE
KEY_COLUMN=BRAND_ID
LOOKUP_KEY_COLUMN=BRAND_ID
EXTERNAL_ID_COLUMN=STORE_ID', current_timestamp, current_timestamp);

4.6.2.4. Relational Router

Sometimes routing decisions need to be made based on data that is not in the current row being
synchronized. Consider an example where an Order table and a OrderLineItem table need to be routed to
a specific store. The Order table has a column named order_id and STORE_ID. A store node has an
external_id that is equal to the STORE_ID on the Order table. OrderLineItem, however, only has a
foreign key to its Order of order_id. To route OrderLineItems to the same nodes that the Order will be
routed to, we need to reference the master Order record.

There are two possible ways to route the OrderLineItem in SymmetricDS. One is to configure a
'subselect' router_type on the ROUTER table and the other is to configure an external_select on the
TRIGGER table.

A 'subselect' is configured with a router_expression that is a SQL select statement which returns a result
set of the node_ids that need routed to. Column tokens can be used in the SQL expression and will be
replaced with row column data. The overhead of using this router type is high because the 'subselect'
statement runs for each row that is routed. It should not be used for tables that have a lot of rows that are
updated. It also has the disadvantage that if the Order master record is deleted, then no results would be
returned and routing would not happen. The router_expression is appended to the following SQL
statement in order to select the node ids.

select c.node_id from sym_node c where
c.node_group_id=:NODE_GROUP_ID and c.sync_enabled=1 and

Consider a table that needs to be routed to all nodes in the target group only when a status column is set to

Configuration

Symmetric DS v2.2 32

'OK.' The following SQL statement will insert a column router to accomplish that.

insert into SYM_ROUTER
(router_id, source_node_group_id, target_node_group_id, router_type,
router_expression, create_time, last_update_time)

values
('corp-2-store','corp', 'store', 'subselect',
'c.external_id in (select STORE_ID from order where order_id=:ORDER_ID)',
current_timestamp, current_timestamp);

Alternatively, when using an external_select on the TRIGGER table, data is captured in the
EXTERNAL_DATA column of the DATA table at the time a trigger fires. The EXTERNAL_DATA can
then be used for routing by using a router_type of 'column'. The advantage of this approach is that it is
very unlikely that the master Order table will have been deleted at the time any DML accures on the
OrderLineItem table. It also is a bit more effcient than the 'subselect' approach, although the triggers
produced do run the extra external_select inline with application database updates.

In the following example, the STORE_ID is captured from the Order table in the EXTERNAL_DATA
column. EXTERNAL_DATA is always available for routing as a virtual column in a 'column' router. The
router is configured to route based on the captured EXTERNAL_DATA to all nodes whose external_id
matches. Note that other supported node attribute token can also be used for routing.

insert into SYM_TRIGGER
(trigger_id,source_table_name,channel_id,external_select,
last_update_time,create_time)

values
('orderlineitem', 'orderlineitem', 'orderlineitem','select STORE_ID
from order where order_id=$(curTriggerValue).$(curColumnPrefix)order_id',
current_timestamp, current_timestamp);

insert into SYM_ROUTER
(router_id, source_node_group_id, target_node_group_id, router_type,
router_expression, create_time, last_update_time)

values
('corp-2-store-ext','corp', 'store', 'column',
'EXTERNAL_DATA=:EXTERNAL_ID', current_timestamp, current_timestamp);

4.6.2.5. Scripted Router

When more flexibility is needed in the logic to choose the nodes to route to, then the a Bean Shell router
may be used. Bean Shell is a Java-like scripting language. Documentation for the Bean Shell scripting
language can be found at http://www.beanshell.org.

The router_type for a Bean Shell router is 'bsh'. The router_expression is a valid Bean Shell script that:

• adds node ids to the 'targetNodes' collection which is bound to the script

• returns a new collection of node ids

• returns a single node id

Configuration

Symmetric DS v2.2 33

http://www.beanshell.org/

• returns true to indicate that all nodes should be routed or returns false to indicate that no nodes
should be routed

Also bound to the script evaluation is a list of 'nodes'. The list of 'nodes' is a list of eligible Node objects.
The current data column values and the old data column values are bound to the script evaluation as Java
object representations of the column data. The columns are bound using the uppercase names of the
columns. Old values are bound to uppercase representations that are prefixed with 'OLD_'.

In the following example, the node_id is a combination of STORE_ID and WORKSTATION_NUMBER,
both of which are columns on the table that is being routed.

insert into SYM_ROUTER
(router_id, source_node_group_id, target_node_group_id, router_type,
router_expression, create_time, last_update_time)

values
('corp-2-store-bsh','corp', 'store', 'bsh',
'targetNodes.add(STORE_ID + "-" + WORKSTATION_NUMBER);',
current_timestamp, current_timestamp);

The same could also be accomplished by simply returning the node id. The last line of a bsh script is
always the return value.

insert into SYM_ROUTER
(router_id, source_node_group_id, target_node_group_id, router_type,
router_expression, create_time, last_update_time)

values
('corp-2-store-bsh','corp', 'store', 'bsh',
'STORE_ID + "-" + WORKSTATION_NUMBER',
current_timestamp, current_timestamp);

The following example will synchronize to all nodes if the FLAG column has changed, otherwise no
nodes will be synchronized.

insert into SYM_ROUTER
(router_id, source_node_group_id, target_node_group_id, router_type,
router_expression, create_time, last_update_time)

values
('corp-2-store-flag-changed','corp', 'store', 'bsh',
'FLAG != null && !FLAG.equals(OLD_FLAG)',
current_timestamp, current_timestamp);

4.6.3. Trigger / Router Mappings

Two important controls can be configured for a specific Trigger / Router combination: Initial Load and
Ping Back. The parameters for these can be found in the Trigger / Router mapping table,

Configuration

Symmetric DS v2.2 34

TRIGGER_ROUTER.

4.6.3.1. Initial Load

An initial load is the process of seeding tables at a target node with data from its parent node. When a
node connects and data is extracted, after it is registered and if an initial load was requested, each table
that is configured to synchronize to the target node group will be given a reload event in the order defined
by the end user. A SQL statement is run against each table to get the data load that will be streamed to the
target node. The selected data is filtered through the configured router for the table being loaded. If the
data set is going to be large, then SQL criteria can optionally be provided to pair down the data that is
selected out of the database.

An initial load can not occur until after a node is registered. An initial load is requested by setting the
initial_load_enabled column on NODE_SECURITY to 1 on the row for the target node in the parent
node's database. The next time the target node synchronizes, reload batches will be inserted. At the same
time reload batches are inserted, all previously pending batches for the node are marked as successfully
sent.

Important

Note that if the parent node that a node is registering with is not a registration server node (as
can happen with a registration redirect or certain non-tree structure node configurations) the
parent node's NODE_SECURITY entry must exist at the parent node and have a non-null
value for column initial_load_time. Nodes can't be registered to non-registration-server nodes
without this value being set one way or another (i.e., manually, or as a result of an initial load
occuring at the parent node).

SymmetricDS recognizes that an initial load has completed when the initial_load_time column on the
target node is set to a non-null value.

An initial load is accomplished by inserting reload batches in a defined order according to the
initial_load_order column on TRIGGER_ROUTER. Initial load data is always queried from the source
database table. All data is passed through the configured router to filter out data that might not be targeted
at a node.

An efficient way to select a subset of data from a table for an initial load is to provide an
initial_load_select clause on TRIGGER_ROUTER. This clause, if present, is applied as a where clause
to the SQL used to select the data to be loaded. If an initial_load_select clause is provided, data will not
be passed through the configured router during initial load. In cases where custom routing is done using a
feature like Section 4.6.2.4, Relational Router (p. 32) , an initial_load_select clause will always need to
be provided because the router would not function properly with initial load data.

One example of the use of an initial load select would be if you wished to only load data created more
recently than the start of year 2011. Say, for example, the column created_time contains the creation date.
Your initial_load_select would read created_time > ts {'2011-01-01 00:00:00.0000'} (using whatever
timestamp format works for your database). This then gets applied as a where clause when selecting data
from the table.

Configuration

Symmetric DS v2.2 35

Important

When providing an initial_load_select be sure to test out the criteria against production data
in a query browser. Do an explain plan to make sure you are properly using indexes.

4.6.3.2. Dead Triggers

Occasionally the decision of what data to load initially results in additional triggers. These triggers,
known as Dead Triggers, are configured such that they do not capture any data changes. A "dead"
Trigger is one that does not capture data changes. In other words, the sync_on_insert, sync_on_update, and
sync_on_delete properties for the Trigger are all set to false. However, since the Trigger is specified, it
will be included in the initial load of data for target Nodes.

Why might you need a Dead Trigger? A dead Trigger might be used to load a read-only lookup table, for
example. It could also be used to load a table that needs populated with example or default data. Another
use is a recovery load of data for tables that have a single direction of synchronization. For example, a
retail store records sales transaction that synchronize in one direction by trickling back to the central
office. If the retail store needs to recover all the sales transactions from the central office, they can be sent
are part of an initial load from the central office by setting up dead Triggers that "sync" in that direction.

The following SQL statement sets up a non-syncing dead Trigger that sends the sale_transaction table to
the "store" Node Group from the "corp" Node Group during an initial load.

insert into sym_trigger (TRIGGER_ID,SOURCE_CATALOG_NAME,
SOURCE_SCHEMA_NAME,SOURCE_TABLE_NAME,CHANNEL_ID,
SYNC_ON_UPDATE,SYNC_ON_INSERT,SYNC_ON_DELETE,
SYNC_ON_INCOMING_BATCH,NAME_FOR_UPDATE_TRIGGER,
NAME_FOR_INSERT_TRIGGER,NAME_FOR_DELETE_TRIGGER,
SYNC_ON_UPDATE_CONDITION,SYNC_ON_INSERT_CONDITION,
SYNC_ON_DELETE_CONDITION,EXTERNAL_SELECT,
TX_ID_EXPRESSION,EXCLUDED_COLUMN_NAMES,
CREATE_TIME,LAST_UPDATE_BY,LAST_UPDATE_TIME)
values ('SALE_TRANSACTION_DEAD',null,null,
'SALE_TRANSACTION','transaction',
0,0,0,0,null,null,null,null,null,null,null,null,null,
current_timestamp,'demo',current_timestamp);

insert into sym_router (ROUTER_ID,TARGET_CATALOG_NAME,TARGET_SCHEMA_NAME,
TARGET_TABLE_NAME,SOURCE_NODE_GROUP_ID,TARGET_NODE_GROUP_ID,ROUTER_TYPE,
ROUTER_EXPRESSION,SYNC_ON_UPDATE,SYNC_ON_INSERT,SYNC_ON_DELETE,
CREATE_TIME,LAST_UPDATE_BY,LAST_UPDATE_TIME)
values ('CORP_2_STORE',null,null,null,
'corp','store',null,null,1,1,1,
current_timestamp,'demo',current_timestamp);

insert into sym_trigger_router (TRIGGER_ID,ROUTER_ID,INITIAL_LOAD_ORDER,
INITIAL_LOAD_SELECT,CREATE_TIME,LAST_UPDATE_BY,LAST_UPDATE_TIME)
values ('SALE_TRANSACTION_DEAD','CORP_2_REGION',100,null,
current_timestamp,'demo',current_timestamp);

Configuration

Symmetric DS v2.2 36

4.6.3.3. Enabling "Ping Back"

As discussed in Section 3.6.3.2, Circular References and "Ping Back" (p. 22) SymmetricDS, by default,
avoids circular data changes. When a trigger fires as a result of SymmetricDS itself (such as the case
when sync on incoming batch is set), it records the originating source node of the data change in
source_node_id. During routing, if routing results in sending the data back to the originating source node,
the data is not routed by default. If instead you wish to route the data back to the originating node, you
can set the ping_back_enabled column for the needed particular trigger / router combination. This will
cause the router to "ping" the data back to the originating node when it usually would not.

4.7. Opening Registration

Node registration is the act of setting up a new NODE and NODE_SECURITY so that when the new
node is brought online it is allowed to join the system. Nodes are only allowed to register if rows exist for
the node and the registration_enabled flag is set to 1. If the auto.registration SymmetricDS property is
set to true, then when a node attempts to register, if registration has not already occurred, the node will
automatically be registered.

SymmetricDS allows you to have multiple nodes with the same external_id. Out of the box,
openRegistration will open a new registration if a registration already exists for a node with the same
external_id. A new registration means a new node with a new node_id and the same external_id will be
created. If you want to re-register the same node you can use the reOpenRegistration() JMX method
which takes a node_id as an argument.

Configuration

Symmetric DS v2.2 37

Chapter 5. Advanced Topics
This chapter focuses on a variety of topics, including deployment options, jobs, clustering, encryptions,
synchronization control, and configuration of SymmetricDS.

5.1. Advanced Synchronization

5.1.1. Bi-Directional Synchronization

SymmetricDS allows tables to be synchronized bi-directionally. Note that an outgoing synchronization
does not process changes during an incoming synchronization on the same node unless the trigger was
created with the sync_on_incoming_batch flag set. If the sync_on_incoming_batch flag is set, then update
loops are prevented by a feature that is available in most database dialects. More specifically, during an
incoming synchronization the source node_id is put into a database session variable that is available to the
database trigger. Data events are not generated if the target node_id on an outgoing synchronization is
equal to the source node_id.

By default, only the columns that changed will be updated in the target system.

More complex conflict resolution strategies can be accomplished by using the IDataLoaderFilter

extension point which has access to both old and new data.

5.1.2. Multi-Tiered Synchronization

As shown in Section 3.2, Organizing Nodes (p. 15) , there may be scenarios where data needs to flow
through multiple tiers of nodes that are organized in a tree-like network with each tier requiring a
different subset of data. For example, you may have a system where the lowest tier may by a computer or
device located in a store. Those devices may connect to a server located physically at that store. Then the
store server may communicate with a corporate server for example. In this case, the three tiers would be
device, store, and corporate. Each tier is typically represented by a node group. Each node in the tier
would belong to the node group representing that tier.

A node will always push and pull data to other node groups according to the node group link
configuration. A node can only pull and push data to other nodes that are represented node table in its
database and having sync_enabled = 1. Because of this, a tree-like hierarchy of nodes can be created by
having only a subset of nodes belonging to the same node group represented at the different branches of
the tree.

If auto registration is turned off, then this setup must occur manually by opening registration for the
desired nodes at the desired parent node and by configuring each node's registration.url to be the parent
node's URL. The parent node is always tracked by the setting of the parent's node_id in the
created_at_node_id column of the new node. When a node registers and downloads its configuration it is
always provided the configuration for nodes that might register with the node itself based on the Node
Group Links defined in the parent node.

Symmetric DS v2.2 38

5.1.2.1. Registration Redirect

When deploying a multi-tiered system it may be advantageous to have only one registration server, even
though the parent node of a registering node could be any of a number of nodes in the system. In
SymmetricDS the parent node is always the node that a child registers with. The
REGISTRATION_REDIRECT table allows a single node, usually the root server in the network, to
redirect registering nodes to their true parents. It does so based on a mapping found in the table of the
external id (registrant_external_id) to the parent's node id (registration_node_id).

For example, if it is desired to have a series of regional servers that workstations at retail stores get
assigned to based on their external_id, the store number, then you might insert into
REGISTRATION_REDIRECT the store number as the registrant_external_id and the node_id of the
assigned region as the registration_node_id. When a workstation at the store registers, the root server
send an HTTP redirect to the sync_url of the node that matches the registration_node_id.

Important

Please see Section 4.6.3.1, Initial Load (p. 35) for important details around initial loads and
registration when using registration redirect.

5.2. Jobs

The SymmetricDS software allows for outgoing and incoming changes to be synchronized to/from other
databases. The node that initiates a synchronization connection is the client, and the node receiving a
connection is the host. Because synchronization is configurable to push or pull in either direction, the
same node can act as either a client or a host in different circumstances.

The SymmetricDS software consists of a series of background jobs, managers, Servlets, and services
wired together via dependency injection using the Spring Framework.

As a client, the node runs the router job, push job and pull job on a timer thread. The router job uses
services to create batches that are targeted at certain nodes. The push job uses services to extract and
stream data to another node (that is, it pushes data). The response from a push is a list of batch
acknowlegements to indicate that data was loaded. The pull job uses services to load data that is streamed
from another node (i.e., it pulls data). After loading data, a second connection is made to send a list of
batch acknowlegements.

As a host, the node waits for incoming connections that pull, push, or acknowledge data changes. The
push Servlet uses services to load data that is pushed from a client node. After loading data, it responds
with a list of batch acknowledgements. The pull Servlet uses services to extract, and stream data back to
the client node. The ack Servlet uses services to update the status of data that was loaded at a client node.
The router job batches and routes data.

By default, data is extracted from the source database into memory until a threshold size is reached. If the
threshold size is reached, data is streamed to a temporary file in the JVM's default temporary directory.
Next, the data is streamed to the target node across the transport layer. The receiving node will cache the

Advanced Topics

Symmetric DS v2.2 39

http://springframework.org

data in memory until the threshold size is reached, writing to a temporary file if necessary. At last, the
data is loaded into the target database by the data loader. This step by step approach allows for extract
time, transport time, and load time to all be measured independently. It also allows database resources to
be used most optimally.

The transport manager handles the incoming and outgoing streams of data between nodes. The default
transport is based on a simple implementation over HTTP. An internal transport is also provided. It is
possible to add other implementations, such as a socket-based transport manager.

Node communication over HTTP is represented in the following figure.

Figure 5.1. Node Communication

The StandaloneSymmetricEngine is wrapper API that can be used to directly start the client services only.
The SymmetricWebServer is a wrapper API that can be used to directly start both the client and host services
inside a Jetty web container. The SymmetricLauncher provides command line tools to work with and start
SymmetricDS.

5.2.1. Route Job

Advanced Topics

Symmetric DS v2.2 40

5.2.1.1. Overview

The SymmetricDS-created database triggers cause data to be capture in the DATA table. The next step in
the synchronization process is to process the change data to determine which nodes, if any, the data
should be routed to. This step is performed by the Route Job. In addition to determining which nodes data
will be sent to, the Route Job is also responsible for determing how much data will be batched together
for transport. It is a single background task that inserts into DATA_EVENT and OUTGOING_BATCH.

At a high level, the Route Job is straightforward. It collects a list of data ids from DATA which haven't
yet been routed (see Section 5.2.1.2, Data Gaps (p. 41) for much more detail about this step), one channel
at a time, up to a limit specified by the channel configuration (max_data_to_route, on CHANNEL). The
data is then batched based on the batch_algorithm defined for the channel and as documented in
Section 4.5, Channel (p. 27) . Note that, for the default batching algorithm, there may actually be more
than max_data_to_route included depending on the transaction boundaries. The mapping of data to specific
nodes, organized into batches, is then recorded in OUTGOING_BATCH with a status of "RT" in each
case (representing the fact that the Route Job is still running). Once the routing algorithms and batching
are completed, the batches are organized with their corresponding data ids and saved in DATA_EVENT.
Once DATA_EVENT is updated, the rows in OUTGOING_BATCH are updated to a status of New
"NE".

5.2.1.2. Data Gaps

On the surface, the first Route Job step of collecting unrouted data ids seems simple: assign sequential
data ids for each data row as it's inserted and keep track of which data id was last routed and start from
there. The difficulty arises, however, due to the fact that there can be multiple transactions inserting into
DATA simultaneously. As such, a given section of rows in the DATA table may actually contain "gaps"
in the data ids when the Route Job is executing. Most of these gaps are only temporarily and fill in at
some point after routing and need to be picked up with the next run of the Route Job. Thus, the Route Job
needs to remember to route the filled-in gaps. Worse yet, some of these gaps are actually permanent and
result from a transaction that is rolled back for some reason. In this case, the Route Job must continue to
watch for the gap to fill in and, at some point, eventually gives up and assumes the gap is permanent and
can be skipped. All of this must be done in some fashion that guarantees that gaps are routed when they
fill in while also keeping routing as efficient as possible.

SymmetricDS handles the issue of data gaps by making use of a table, DATA_GAP, to record gaps found
in the data ids. In fact, this table completely defines the entire range of data tha can be routed at any point
in time. For a brand new instance of SymmetricDS, this table is empty and SymmetricDS creates a gap
starting from data id of zero and ending with a very large number (defined by routing.largest.gap.size).
At the start of a Route Job, the list of valid gaps (gaps with status of 'GP') is collected, and each gap is
evaluated in turn. If a gap is sufficiently old (as defined by routing.stale.dataid.gap.time.ms, the gap is
marked as skipped (status of 'SK') and will no longer be evaluated in future Route Jobs (note that the 'last'
gap (the one with the highest starting data id) is never skipped). If not skipped, then DATA_EVENT is
searched for data ids present in the gap. If one or more data ids is found in DATA_EVENT, then the
current gap is marked with a status of OK, and new gap(s) are created to represent the data ids still
missing in the gap's range. This process is done for all gaps. If the very last gap contained data, a new gap
starting from the highest data id and ending at (highest data id + routing.largest.gap.size) is then
created. This process has resulted in an updated list of gaps which may contain new data to be routed.

Advanced Topics

Symmetric DS v2.2 41

5.2.2. Controlling Synchronization Frequency

The frequency of data synchronization is controlled by the coordination of a series of asynchronous
events.

The Route Job determines which nodes data will be sent to, as well as how much data will be batched
together for transport. When the start.route.job SymmetricDS property is set to true, the frequency that
routing occurs is controlled by the job.routing.period.time.ms. Each time data is routed, the DATA_REF
table is updated with the id of the last contiguous data row to have been processed. This is done so the
query to find unrouted data is optimal.

After data is routed, it awaits transport to the target nodes. Transport can occur when a client node is
configured to pull data or when the host node is configured to push data. These events are controlled by
the Push and the Pull Jobs. When the start.pull.job SymmetricDS property is set to true, the frequency
that data is pulled is controlled by the job.pull.period.time.ms. When the start.push.job SymmetricDS
property is set to true, the frequency that data is pushed is controlled by the job.push.period.time.ms.
Data is extracted by channel from the source database's DATA table at an interval controlled by the
extract_period_millis column on the CHANNEL table. The last_extract_time is always recorded, by
channel, on the NODE_CHANNEL_CTL table for the host node's id. When the Pull and Push Job run, if
the extract period has not passed according to the last extract time, then the channel will be skipped for
this run. If the extract_period_millis is set to zero, data extraction will happen every time the jobs run.

SymmetricDS also provides the ability to configure windows of time when synchronization is allowed.
This is done using the NODE_GROUP_CHANNEL_WINDOW table. A list of allowed time windows
can be specified for a node group and a channel. If one or more windows exist, then data will only be
extracted and transported if the time of day falls within the window of time specified. The configured
times are always for the target node's local time. If the start_time is greater than the end_time, then the
window crosses over to the next day.

All data loading may be disabled by setting the dataloader.enable property to false. This has the effect of
not allowing incoming synchronizations, while allowing outgoing synchronizations. All data extractions
may be disabled by setting the dataextractor.enable property to false. These properties can be controlled
by inserting into the root server's PARAMETER table. These properties affect every channel with the
exception of the 'config' channel.

5.2.3. Sync Triggers Job

SymmetricDS examines the current configuration, corresponding database triggers, and the underlying
tables to determine if database triggers need created or updated. The change activity is recorded on the
TRIGGER_HIST table with a reason for the change. The following reasons for a change are possible:

• N - New trigger that has not been created before

• S - Schema changes in the table were detected

• C - Configuration changes in Trigger

• T - Trigger was missing

Advanced Topics

Symmetric DS v2.2 42

A configuration entry in Trigger without any history in Trigger Hist results in a new trigger being created
(N). The Trigger Hist stores a hash of the underlying table, so any alteration to the table causes the trigger
to be rebuilt (S). When the last_update_time is changed on the Trigger entry, the configuration change
causes the trigger to be rebuilt (C). If an entry in Trigger Hist is missing the corresponding database
trigger, the trigger is created (T).

The process of examining triggers and rebuilding them is automatically run during startup and each night
by the SyncTriggersJob. The user can also manually run the process at any time by invoking the
syncTriggers() method over JMX. The SyncTriggersJob is enabled by default to run at 15 minutes past
midnight. If SymmetricDS is being run from a collection of servers (multiple instances of the same Node
running against the same database), then locking should be enable to prevent database contention. The
following runtime properties control the behavior of the process.

start.synctriggers.job
Whether the sync triggers job is enabled for this node. [Default: true]

job.synctriggers.aftermidnight.minutes
If scheduled, the sync triggers job will run nightly. This is how long after midnight that job will run.
[Default: 15]

cluster.lock.during.sync.triggers
Indicate if the sync triggers job is clustered and requires a lock before running. [Default: false]

5.3. JMS Publishing

With the proper configuration SymmetricDS can publish XML messages of captured data changes to JMS
during routing or transactionally while data loading synchronized data into a target database. The
following explains how to publish to JMS during synchronization to the target database.

The XmlPublisherDataLoaderFilter is a IDataLoaderFilter that may be configured to publish specific
tables as an XML message to a JMS provider. See Chapter 6, Extending SymmetricDS (p. 56) for
information on how to configure an extension point. If the publish to JMS fails, the batch will be marked
in error, the loaded data for the batch will be rolled back and the batch will be retried during the next
synchronization run.

The following is an example extension point configuration that will publish four tables in XML with a
root tag of 'sale'. Each XML message will be grouped by the batch and the column names identified by
the groupByColumnNames property which have the same values.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<bean id="configuration-publishingFilter"
class="org.jumpmind.symmetric.integrate.XmlPublisherDataLoaderFilter">
<property name="xmlTagNameToUseForGroup" value="sale"/>

Advanced Topics

Symmetric DS v2.2 43

<property name="tableNamesToPublishAsGroup">
<list>

<value>SALE_TX</value>
<value>SALE_LINE_ITEM</value>
<value>SALE_TAX</value>
<value>SALE_TOTAL</value>

</list>
</property>
<property name="groupByColumnNames">

<list>
<value>STORE_ID</value>
<value>BUSINESS_DAY</value>
<value>WORKSTATION_ID</value>
<value>TRANSACTION_ID</value>

</list>
</property>
<property name="publisher">

<bean class="org.jumpmind.symmetric.integrate.SimpleJmsPublisher">
<property name="jmsTemplate" ref="definedSpringJmsTemplate"/>

</bean>
</property>

</bean>
</beans>

The publisher property on the XmlPublisherDataLoaderFilter takes an interface of type IPublisher. The
implementation demonstrated here is an implementation that publishes to JMS using Spring's JMS
template. Other implementations of IPublisher could easily publish the XML to other targets like an
HTTP server, the file system or secure copy it to another server.

The above configuration will publish XML similiar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<sale xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
id="0012010-01-220031234" nodeid="00001" time="1264187704155">
<row entity="SALE_TX" dml="I">
<data key="STORE_ID">001</data>
<data key="BUSINESS_DAY">2010-01-22</data>
<data key="WORKSTATION_ID">003</data>
<data key="TRANSACTION_ID">1234</data>
<data key="CASHIER_ID">010110</data>

</row>
<row entity="SALE_LINE_ITEM" dml="I">
<data key="STORE_ID">001</data>
<data key="BUSINESS_DAY">2010-01-22</data>
<data key="WORKSTATION_ID">003</data>
<data key="TRANSACTION_ID">1234</data>
<data key="SKU">9999999</data>
<data key="PRICE">10.00</data>
<data key="DESC" xsi:nil="true"/>

</row>
<row entity="SALE_LINE_ITEM" dml="I">
<data key="STORE_ID">001</data>
<data key="BUSINESS_DAY">2010-01-22</data>
<data key="WORKSTATION_ID">003</data>
<data key="TRANSACTION_ID">1234</data>
<data key="SKU">9999999</data>
<data key="PRICE">10.00</data>
<data key="DESC" xsi:nil="true"/>

</row>
<row entity="SALE_TAX" dml="I">

Advanced Topics

Symmetric DS v2.2 44

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jms.html#jms-jmstemplate
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/jms.html#jms-jmstemplate

<data key="STORE_ID">001</data>
<data key="BUSINESS_DAY">2010-01-22</data>
<data key="WORKSTATION_ID">003</data>
<data key="TRANSACTION_ID">1234</data>
<data key="AMOUNT">1.33</data>

</row>
<row entity="SALE_TOTAL" dml="I">
<data key="STORE_ID">001</data>
<data key="BUSINESS_DAY">2010-01-22</data>
<data key="WORKSTATION_ID">003</data>
<data key="TRANSACTION_ID">1234</data>
<data key="AMOUNT">21.33</data>

</row>
</sale>

To publish JMS messages during routing the same pattern is valid, with the exception that the extension
point would be the XmlPublisherDataRouter and the router would be configured by setting the
router_type of a ROUTER to the Spring bean name of the registered extension point. Of course, the
router would need to be linked through TRIGGER_ROUTERs to each TRIGGER table that needs
published.

5.4. Deployment Options

An instance of SymmetricDS can be deployed in several ways:

• Web application archive (WAR) deployed to an application server

This option means packaging a WAR file and deploying to your favorite web server, like Apache
Tomcat. It's a little more work, but you can configure the web server to do whatever you need.
SymmetricDS can also be embedded in an existing web application, if desired.

• Standalone service that embeds Jetty web server

This option means running the sym command line, which launches the built-in Jetty web server.
This is a simple option because it is already provided, but you lose the flexibility to configure the
web server any further.

• Embedded as a Java library in an application

This option means you must write a wrapper Java program that runs SymmetricDS. You would
probably use Jetty web server, which is also embeddable. You could bring up an embedded
database like Derby or H2. You could configure the web server, database, or SymmetricDS to do
whatever you needed, but it's also the most work of the three options discussed thus far.

• Grails Application

A Grails SymmetricDS plugin is provided at the default Grails plugin site. This option ends up
being a WAR deployment, but allows for the use of the Grails SDK for configuring and building
the deployment. The plugin also provides Gorm (Hibernate) access to many of the core database
tables.

Advanced Topics

Symmetric DS v2.2 45

http://grails.org/plugin/symmetricds

The deployment model you choose depends on how much flexibility you need versus how easy you want
it to be. Both Jetty and Tomcat are excellent, scalable web servers that compete with each other and have
great performance. Most people choose either the Standalone or Web Archive with Tomcat 5.5 or 6.
Deploying to Tomcat is a good middle-of-the-road decision that requires a little more work for more
flexibility.

Next, we will go into a little more detail on the first three deployment options listed above.

5.4.1. Web Archive

As a web application archive, a WAR is deployed to an application server, such as Tomcat, Jetty, or
JBoss. The structure of the archive will have a web.xml file in the WEB-INF folder, an appropriately
configured symmetric.properties file in the WEB-INF/classes folder, and the required JAR files in the
WEB-INF/lib folder.

A war file can be generated using the standalone installation's sym utility and the --create-war option. The
command requires the name of the war file to generate. It essentially packages up the web directory, the
conf directory and includes an optional properties file. Note that if a properties file is included, it will be
copied to WEB-INF/classes/symmetric.properties. This is the same location conf/symmetric.properties
would have been copied to. The generated war distribution uses the same web.xml as the standalone
deployment.

../bin/sym -p my-symmetric-ds.properties --create-war /some/path/to/symmetric-ds.war

The web.base.servlet.path property in symmetric.properties can be set if the SymmetricServlet needs to
coexist with other Servlets. By default, the value is blank. If you set it to, say, web.base.servlet.path=sync
for exmaple, registration.url would be http://server:port/sync.

5.4.2. Standalone

A standalone service can use the sym command line options to start a server. An embedded instance of
Jetty is used to service web requests for all the servlets.

/symmetric/bin/sym --properties root.properties --port 8080 --server

Advanced Topics

Symmetric DS v2.2 46

This example starts the SymmetricDS server on port 8080 with the startup properties found in the
root.properties file.

5.4.3. Embedded

A Java application with the SymmetricDS Java Archive (JAR) library on its classpath can use the
SymmetricWebServer to start the server.

import org.jumpmind.symmetric.SymmetricWebServer;

public class StartSymmetricEngine {

/**
* Start an engine that is configured by two properties files. One is
* packaged with the application and contains overridden properties that are
* specific to the application. The other is found in the application's
* working directory. It can be used to setup environment specific
* properties.
*/
public static void main(String[] args) throws Exception {

SymmetricWebServer node = new SymmetricWebServer(
"classpath://my-application.properties");

// this will create the database, sync triggers, start jobs running
node.start(8080);

// this will stop the node
node.stop();

}

}

This example starts the SymmetricDS server on port 8080 with startup properies found in two locations.
The first file, my-application.properties, is packaged in the application to provide properties that override
the SymmetricDS default values.

5.5. Running SymmetricDS as a Service

SymmetricDS can be configured to start and run as a service in both Windows and *nix platforms.

5.5.1. Running as a Windows Service

SymmetricDS uses the Java Service Wrapper product from Tanuki Software to run in the background as a
Windows system service. The Java Service Wrapper executable is named sym_service.exe so it can be
easily identified from a list of running processes. To install the service, use the provided script:

bin\install_service.bat

Advanced Topics

Symmetric DS v2.2 47

http://wrapper.tanukisoftware.org/

The service configuration is found in conf/sym_service.conf. Edit this file if you want to change the
default port number (8080), initial memory size (256 MB), log file size (10 MB), or other settings. When
started, the server will look in the conf directory for the symmetric.properties file and the log4j.xml file.
Logging for standard out, error, and application are written to the logs directory.

Most configuration changes do not require the service to be re-installed. To un-install the service, use the
provided script:

bin\uninstall_service.bat

Use the net command to start and stop the service:

net start symmetric
net stop symmetric

5.5.2. Running as a *nix Service

SymmetricDS uses the Java Service Wrapper product from Tanuki Software to run in the background as a
Unix system service. The Java Service Wrapper executable is named sym_service so it can be easily
identified from a list of running processes. The service configuration is found in conf/sym_service.conf.
Edit this file if you want to change the default port number (8080), initial memory size (256 MB), log file
size (10 MB), or other settings.

An init script is provided to work with standard Unix run configuration levels. The sym_service.initd file
follows the Linux Standard Base specification, which should work on many systems, including Fedora
and Debian-based distributions. To install the script, copy it into the system init directory:

cp bin/sym_service.initd /etc/init.d/sym_service

Edit the init script to set the SYM_HOME variable to the directory where SymmetricDS is located. The
init script calls the sym_service executable.

To enable the service to run automatically when the system is started:

/sbin/chkconfig --add sym_service

To disable the service from running automatically:

/sbin/chkconfig --del sym_service

On Suse Linux install the service by calling:

/usr/lib/lsb/install_initd sym_service

Advanced Topics

Symmetric DS v2.2 48

http://wrapper.tanukisoftware.org/

Remove the service by calling:

/usr/lib/lsb/remove_initd sym_service

Use the service command to start, stop, and query the status of the service:

/sbin/service sym_service start
/sbin/service sym_service stop
/sbin/service sym_service status

Alternatively, call the init.d script directly:

/etc/init.d/sym_service start
/etc/init.d/sym_service stop
/etc/init.d/sym_service status

5.6. Clustering

A single SymmetricDS node may be clustered across a series of instances, creating a web farm. A node
might be clustered to provide load balancing and failover, for example.

When clustered, a hardware load balancer is typically used to round robin client requests to the cluster.
The load balancer should be configured for stateless connections. Also, the sync.url (discussed in
Section 4.1, Node Properties (p. 24)) SymmetricDS property should be set to the URL of the load
balancer.

If the cluster will be running any of the SymmetricDS jobs, then the cluster.lock.enabled property should
be set to true. By setting this property to true, SymmetricDS will use a row in the LOCK table as a
semaphore to make sure that only one instance at a time runs a job. When a lock is acquired, a row is
updated in the lock table with the time of the lock and the server id of the locking job. The lock time is set
back to null when the job is finished running. Another instance of SymmetricDS cannot aquire a lock
until the locking instance (according to the server id) releases the lock. If an instance is terminated while
the lock is still held, an instance with the same server id is allowed to reaquire the lock. If the locking
instance remains down, the lock can be broken after a period of time, specified by the
cluster.lock.timeout.ms property, has expired. Note that if the job is still running and the lock expires,
two jobs could be running at the same time which could cause database deadlocks.

By default, the locking server id is the hostname of the server. If two clustered instances are running on
the same server, then the cluster.server.id property may be set to indicate the name that the instance
should use for its server id.

When deploying SymmetricDS to an application server like Tomcat or JBoss, no special session
clustering needs to be configured for the application server.

Advanced Topics

Symmetric DS v2.2 49

5.7. Encrypted Passwords

The db.user and db.password properties will accept encrypted text, which protects against casual
observation. The text is prefixed with enc: to indicate that it is encrypted. To encrypt text, use the
following command:

sym -e secret

The text is encrypted by the cipher defined as alias "sym.secret" in the Java keystore. The keystore is
specified by the "sym.keystore.file" system property, which defaults to security/keystore. If a cipher is
not found, a default cipher using Triple DES with a random password is generated.

5.8. Secure Transport

By specifying the "https" protocol for a URL, SymmetricDS will communicate over Secure Sockets
Layer (SSL) for an encrypted transport. The following properties need to be set with "https" in the URL:

sync.url
This is the URL of the current node, so if you want to force other nodes to communicate over SSL
with this node, you specify "https" in the URL.

registration.url
This is the URL where the node will connect for registration when it first starts up. To protect the
registration with SSL, you specify "https" in the URL.

For incoming HTTPS connections, SymmetricDS depends on the webserver where it is deployed, so the
webserver must be configured for HTTPS. As a standalone deployment, the "sym" launcher command
provides options for enabling HTTPS support.

5.8.1. Sym Launcher

The "sym" launch command uses Jetty as an embedded web server. Using command line options, the web
server can be told to listen for HTTP, HTTPS, or both.

sym --port 8080 --server

sym --secure-port 8443 --secure-server

sym --port 8080 --secure-port 8443 --mixed-server

5.8.2. Tomcat

If you deploy SymmetricDS to Apache Tomcat, it can be secured by editing the
TOMCAT_HOME/conf/server.xml configuration file. There is already a line that can be uncommented and
changed to the following:

Advanced Topics

Symmetric DS v2.2 50

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="/symmetric-ds-1.x.x/security/keystore" />

5.8.3. Keystores

When SymmetricDS connects to a URL with HTTPS, Java checks the validity of the certificate using the
built-in trusted keystore located at JRE_HOME/lib/security/cacerts. The "sym" launcher command
overrides the trusted keystore to use its own trusted keystore instead, which is located at security/cacerts.
This keystore contains the certificate aliased as "sym" for use in testing and easing deployments. The
trusted keystore can be overridden by specifying the javax.net.ssl.trustStore system property.

When SymmetricDS is run as a secure server with the "sym" launcher, it accepts incoming requests using
the key installed in the keystore located at security/keystore. The default key is provided for convenience
of testing, but should be re-generated for security.

5.8.4. Generating Keys

To generate new keys and install a server certificate, use the following steps:

1. Open a command prompt and navigate to the security subdirectory of your SymmetricDS
installation.

2. Delete the old key pair and certificate.

keytool -keystore keystore -delete -alias sym

keytool -keystore cacerts -delete -alias sym

Enter keystore password: changeit

3. Generate a new key pair.

keytool -keystore keystore -alias sym -genkey -keyalg RSA -validity 10950

Enter keystore password: changeit
What is your first and last name?
[Unknown]: localhost

What is the name of your organizational unit?
[Unknown]: SymmetricDS

What is the name of your organization?
[Unknown]: JumpMind

What is the name of your City or Locality?
[Unknown]:

What is the name of your State or Province?
[Unknown]:

What is the two-letter country code for this unit?
[Unknown]:

Is CN=localhost, OU=SymmetricDS, O=JumpMind, L=Unknown, ST=Unknown, C=Unknown

Advanced Topics

Symmetric DS v2.2 51

correct?
[no]: yes

Enter key password for <sym>
(RETURN if same as keystore password):

4. Export the certificate from the private keystore.

keytool -keystore keystore -export -alias sym -rfc -file sym.cer

5. Install the certificate in the trusted keystore.

keytool -keystore cacerts -import -alias sym -file sym.cer

5.9. Basic Authentication

SymmetricDS supports basic authentication for client and server nodes. To configure a client node to use
basic authentication when communicating with a server node, specify the following startup parameters:

http.basic.auth.username
username for client node basic authentication. [Default:]

http.basic.auth.password
password for client node basic authentication. [Default:]

The SymmetricDS Standalone and Embedded Server also support basic authentication. This feature is
enabled by specifying the basic authentication username and password using the following startup
parameters:

embedded.webserver.basic.auth.username
username for basic authentication for an embedded server or standalone server node. [Default:]

embedded.webserver.basic.auth.password
password for basic authentication for an embedded server or standalone server node. [Default:]

If the server node is deployed to Tomcat or another application server as a WAR or EAR file, then basic
authentication is setup with the standard configuration in the WEB.xml file.

5.10. IP Filtering

SymmetricDS supports restricting IP addresses of clients that are allowed to connect to servers. The
following filtering functionality is supported for IPv4 addresses (IPv6 is currently not supported).

• CIDR (Classless Inter-Domain Routing) notation

Advanced Topics

Symmetric DS v2.2 52

• Wildcarding

• Range

• Literal

5.10.1. CIDR Filter

Classless Inter-Domain Routing, CIDR, notation is the preferred notation for restricting client
connections to a server node in a SymmetricDS tree. It is a commonly utilized format for IP address
filtering. Many established frameworks, such as Apache, utilize this notation for filtering IP addresses.

The basis for implementing CIDR notation is defining the IP address block and significant bits of that
address that are to be checked. The filter must be a well formatted IP address with a ending with a “/”
followed by a numeric value between 0 and 32. The use of “0” denotes that all IP addresses are allowed
(in which case it's fairly pointless to enable the filtering framework), and “32” signifies only the
precesding IP address would be authorized. In the latter case, a Literal Filter string would be
recommended as it is significantly more obvious that only that address is allowed.

Example 5.1. CIDR Filter String Definition in symmetric.properties

#
Filter string definition to restrict connecting client
IP addresses
#
ip.filters=10.10.4.32/27, 10.5.0.0/16

5.10.2. Literal Filter

Literal filter definitions are just that: they define a single IP address that is authorized to connect to the
server. The only requirement is that the filter string is a complete, well formatted IP address.

5.10.3. Wildcarding

The wildcard notation allows all values for a specific piece of an IP address to be valid (0 to 255 for IPv4
addresses). This is denoted with a “*” within the specific piece (octet for IPv4) of an IP address. The
wildcard character is the only allowable character within that piece of the address (no other characters
included whitespace).

Wildcard filters may be combined with Range Filters. They may NOT be combined with CIDR Filter.

Advanced Topics

Symmetric DS v2.2 53

http://www.ietf.org/rfc/rfc1519.txt
http://httpd.apache.org/docs/1.3/mod/mod_access.html

Example 5.2. Wildcard Filter String Definition in symmetric.properties

#
Filter string definition to restrict connecting client
IP addresses
#
ip.filters=10.10.*.40

5.10.4. Range Filters

Range filter definitions allow for a numeric range to be specified within an address filter. A range must be
a valid numeric range for an piece of an IP address (i.e. an octet in IPv4). The range definition must be in
the form:

Example 5.3. Filter String Definition in symmetric.properties

#
Filter string definition to restrict connecting client
IP addresses
#
ip.filters=10.10.40-20.200-1

5.10.5. Inner workings

Filter strings are compiled on startup, so the hit (although very small) of compiling the authorizers is
incurred only once. Once compiled each request is passed through the chain of authorizers until either a
authorization is passed or the chain is exhausted. In the latter case the request is denied and a protocol
specific response is sent to the client. In the case of HTTP this would be a response code of 401
(FORBIDDEN).

5.10.6. Configuration

Configuring IP filter strings is done through defining the following property in the SymmetricDS
configuration (one of the symmetric .properties files). One need only to define the ip.filter property and
assign a comma “,” delimited string of filter tokens to provide to the filter framework.

Example 5.4. Filter String Definition in symmetric.properties

Advanced Topics

Symmetric DS v2.2 54

#
Filter string definition to restrict connecting client
IP addresses
#
ip.filters=10.10.4.32/27, 100.50-40.10-5.*, 35.58.124.89

Important

Note, that there is obvious overlap between the some of the filtering notation, and hence,
functionality. The Wildcarding and Range Filters functionality exists to provide workarounds
for scenarios where CIDR Filter notation and Literal Filter will not suffice.

Warning

Take care in defining your filter string as it is possible to overlap filters. Also, as with the
definition of any other property in the SymmetricDS configuration, if the property is defined
in multiple properties files the property file that is read in last will override any previous filter
string definitions.

Advanced Topics

Symmetric DS v2.2 55

Chapter 6. Extending SymmetricDS
SymmetricDS may be extended via a plug-in like architecture where extension point interfaces may be
implemented by a custom class and registered with the synchronization engine. All supported extension
points extend the IExtensionPoint interface. The currently available extension points are documented in
the following sections.

When the synchronization engine starts up, a Spring post processor searches the Spring
ApplicationContext for any registered classes which implement IExtensionPoint. An IExtensionPoint
designates whether it should be auto registered or not. If the extension point is to be auto registered then
the post processor registers the known interface with the appropriate service.

The INodeGroupExtensionPoint interface may be optionally implemented to designate that auto
registered extension points should only be auto registered with specific node groups.

/**
* Only apply this extension point to the 'root' node group.
*/
public String[] getNodeGroupIdsToApplyTo() {

return new String[] { "root" };
}

SymmetricDS will look for Spring configured extensions in the application Classpath by importing any
Spring XML configuration files found matching the following pattern:
META-INF/services/symmetric-*-ext.xml. When packaged in a jar file the META-INF directory should be at
the root of the jar file. When packaged in a war file, the META-INF directory should be in the
WEB-INF/classes directory.

6.1. IParameterFilter

Parameter values can be specified in code using a parameter filter. Note that there can be only one
parameter filter per engine instance. The IParameterFilter replaces the deprecated IRuntimeConfig from
prior releases.

public class MyParameterFilter
implements IParameterFilter, INodeGroupExtensionPoint {

/**
* Only apply this filter to stores
*/
public String[] getNodeGroupIdsToApplyTo() {

return new String[] { "store" };
}

public String filterParameter(String key, String value) {
// look up a store number from an already existing properties file.
if (key.equals(ParameterConstants.EXTERNAL_ID)) {

return StoreProperties.getStoreProperties().
getProperty(StoreProperties.STORE_NUMBER);

}
return value;

Symmetric DS v2.2 56

}

public boolean isAutoRegister() {
return true;

}

}

6.2. IDataLoaderFilter

Data can be filtered as it is loaded into the target database. It can also be filtered when it is extracted from
the source database. As data is loaded into the target database, a filter can change the data in a column or
save it somewhere else. It can also specify by the return value of the function call that the data loader
should continue on and load the data (by returning true) or ignore it (by returning false). One possible use
of the filter might be to route credit card data to a secure database and blank it out as it loads into a
less-restricted reporting database.

An IDataLoaderContext is passed to each of the callback methods. A new context is created for each
synchronization. The context provides methods to lookup column indexes by column name, get table
meta data, and access to old data if the sync_column_level flag is enabled. The context also provides a
means to share data during a synchronization between different rows of data that are committed in a
database transaction and are in the same channel. It does so by providing a context cache which can be
populated by the extension point.

Many times the IDataLoaderFilter will be combined with the IBatchListener. The XmlPublisherFilter (in
the org.jumpmind.symmetric.ext package) is a good example of using the combination of the two extension
points in order to create XML messages to be published to JMS.

A class implementing the IDataLoaderFilter interface is injected onto the DataLoaderService in order to
receive callbacks when data is inserted, updated, or deleted.

public MyFilter implements IDataLoaderFilter {

public boolean isAutoRegister() {
return true;

}

public boolean filterInsert(IDataLoaderContext context,
String[] columnValues) {
return true;

}

public boolean filterUpdate(IDataLoaderContext context,
String[] columnValues, String[] keyValues) {
return true;

}

public void filterDelete(IDataLoaderContext context,
String[] keyValues) {
return true;

}

}

Extending SymmetricDS

Symmetric DS v2.2 57

The filter class is specified as a Spring-managed bean. A custom Spring XML file is specified as follows
in a jar at META-INF/services/symmetric-myfilter-ext.xml.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd">

<bean id="myFilter" class="com.mydomain.MyFilter"/>

</beans>

6.3. ITableColumnFilter

Implement this extension point to filter out specific columns from use by the dataloader. Only one
column filter may be added per target table.

6.4. IBatchListener

This extension point is called whenever a batch has completed loading but before the transaction has
committed.

6.5. IAcknowledgeEventListener

Implement this extension point to receive callback events when a batch is acknowledged. The callback for
this listener happens at the point of extraction.

6.6. IReloadListener

Implement this extension point to listen in and take action before or after a reload is requested for a Node.
The callback for this listener happens at the point of extraction.

6.7. IExtractorFilter

This extension point is called after data has been extracted, but before it has been streamed. It has the
ability to inspect each row of data to take some action and indicate, if necessary, that the row should not
be streamed.

Extending SymmetricDS

Symmetric DS v2.2 58

6.8. ISyncUrlExtension

This extension point is used to select an appropriate URL based on the URI provided in the sync_url

column of sym_node.

To use this extension point configure the sync_url for a node with the protocol of ext://beanName. The
beanName is the name you give the extension point in the extension xml file.

6.9. INodeIdGenerator

This extension point allows SymmetricDS users to implement their own algorithms for how node ids and
passwords are generated or selected during the registration process. There may be only one node
generator per SymmetricDS instance.

6.10. ITriggerCreationListener

Implement this extension point to get status callbacks during trigger creation.

6.11. IBatchAlgorithm

Implement this extension point and set the name of the Spring bean on the batch_algorithm column of the
Channel table to use. This extension point gives fine grained control over how a channel is batched.

6.12. IDataRouter

Implement this extension point and set the name of the Spring bean on the router_type column of the
Router table to use. This extension point gives the ability to programatically decide which nodes data
should be routed to.

6.13. IHeartbeatListener

Implement this extension point to get callbacks during the heartbeat job.

6.14. IOfflineClientListener

Implement this extension point to get callbacks for offline events on client nodes.

6.15. IOfflineServerListener

Extending SymmetricDS

Symmetric DS v2.2 59

Implement this extension point to get callbacks for offline events detected on a server node during
monitoring of client nodes.

6.16. INodePasswordFilter

Implement this extension point to intercept the saving and rendering of the node password.

6.17. IServletExtension

Implement this extension point to allow additional Servlets to be registered with SymmetricDS. This is
probably only useful if SymmetricDS is running in standalone or embedded mode.

Extending SymmetricDS

Symmetric DS v2.2 60

Chapter 7. Administration

7.1. Solving Synchronization Issues

By design, whenever SymmetricDS encounters an issue with a synchronization, the batch containing the
error is marked as being in an error state, and all subsequent batches for that particular channel to that
particular node are held and not synchronized until the error batch is resolved. SymmetricDS will retry
the batch in error until the situation creating the error is resolved (or the data for the batch itself is
changed).

7.1.1. Analyzing the Issue

The first step in analyzing the cause of a failed batch is to locate information about the data in the batch,
starting with either OUTGOING_BATCH or INCOMING_BATCH. We'll use outgoing batches for the
examples below. To locate batches in error, use:

select * from sym_outgoing_batch where error_flag=1;

Several useful pieces of information are available from this query:

• The batch number of the failed batch, available in column BATCH_ID.

• The node to which the batch is being sent, available in column NODE_ID.

• The channel to which the batch belongs, available in column CHANNEL_ID. All subsequent batches on
this channel to this node will be held until the error condition is resolved.

• The specific data id in the batch which is causing the failure, available in column FAILED_DATA_ID.

• Any SQL message, SQL State, and SQL Codes being returned during the synchronization attempt,
available in columns SQL_MESSAGE, SQL_STATE, and SQL_CODE, respectively.

Note
Using the error_flag on the batch table, as shown above, is more reliable than using the status

column. The status column can change from 'ER' to a different status temporarily as the batch
is retried.

Note
The query above will also show you any recent batches that were originally in error and were
changed to be manually skipped. See the end of Section 7.1.2, Resolving the Issue (p. 62) for
more details.

To get a full picture of the batch, you can query for information representing the complete list of all data
changes associated with the failed batch by joining DATA and DATA_EVENT, such as:

Symmetric DS v2.2 61

select * from sym_data where data_id in
(select data_id from sym_data_event where batch_id='XXXXXX');

where XXXXXX is the batch id of the failing batch.

This query returns a wealth of information about each data change in a batch, including:

• The table involved in each data change, available in column TABLE_NAME,

• The event type (Update [U], Insert [I], or Delete [D]), available in column EVENT_TYPE,

• A comma separated list of the new data and (optionally) the old data, available in columns ROW_DATA

and OLD_DATA, respectively.

• The primary key data, available in column PK_DATA

• The channel id, trigger history information, transaction id if available, and other information.

More importantly, if you narrow your query to just the failed data id you can determine the exact data
change that is causing the failure:

select * from sym_data where data_id in
(select failed_data_id from sym_outgoing_batch where batch_id='XXXXX');

where XXXXXX is the batch that is failing.

The queries above usually yield enough information to be able to determine why a particular batch is
failing. Common reasons a batch might be failing include:

• The schema at the destination has a column that is not nullable yet the source has the column
defined as nullable and a data change was sent with the column as null.

• A foreign key constraint at the destination is preventing an insertion or update, which could be
caused from data being deleted at the destination or the foreign key constraint is not in place at the
source.

• The data size of a column on the destination is smaller than the data size in the source, and data
that is too large for the destination has been synced.

7.1.2. Resolving the Issue

Once you have decided upon the cause of the issue, you'll have to decide the best course of action to fix
the issue. If, for example, the problem is due to a database schema mismatch, one possible solution would
be to alter the destination database in such a way that the SQL error no longer occurs. Whatever approach
you take to remedy the issue, once you have made the change, on the next push or pull SymmetricDS will
retry the batch and the channel's data will start flowing again.

If you have instead decided that the batch itself is wrong, or does not need synchronized, or you wish to
remove a particular data change from a batch, you do have the option of changing the data associated

Administration

Symmetric DS v2.2 62

with the batch directly.

Warning
Be cautious when using the following two approaches to resolve synchronization issues. By
far, the best approach to solving a synchronization error is to resolve what is truly causing the
error at the destination database. Skipping a batch or removing a data id as discussed below
should be your solution of last resort, since doing so results in differences between the source
and destination databases.

Now that you've read the warning, if you still want to change the batch data itself, you do have several
options, including:

• Causing SymmetricDS to skip the batch completely. This is accomplished by setting the batch's
status to 'OK', as in:

update sym_outgoing_batch set status='OK' where batch_id='XXXXXX'

where XXXXXX is the failing batch. On the next pull or push, SymmetricDS will skip this batch
since it now thinks the batch has already been synchronized. Note that you can still distinguish
between successful batches and ones that you've artificially marked as 'OK', since the error_flag

column on the failed batch will still be set to '1' (in error).

• Removing the failing data id from the batch by deleting the corresponding row in DATA_EVENT.
Eliminating the data id from the list of data ids in the batch will cause future synchronization
attempts of the batch to no longer include that particular data change as part of the batch. For
example:

delete from sym_data_event where batch_id='XXXXXX' and data_id='YYYYYY'

where XXXXXX is the failing batch and YYYYYY is the data id to longer be included in the
batch.

7.2. Changing Triggers

A trigger row may be updated using SQL to change a synchronization definition. SymmetricDS will look
for changes each night or whenever the Sync Triggers Job is run (see below). For example, a change to
place the table price_changes into the price channel would be accomplished with the following statement:

update SYM_TRIGGER
set channel_id = 'price',

last_update_by = 'jsmith',
last_update_time = current_timestamp

where source_table_name = 'price_changes';

All configuration should be managed centrally at the registration node. If enabled, configuration changes
will be synchronized out to client nodes. When trigger changes reach the client nodes the Sync Triggers
Job will run automatically.

Administration

Symmetric DS v2.2 63

Centrally, the trigger changes will not take effect until the Sync Triggers Job runs. Instead of waiting for
the Sync Triggers Job to run overnight after making a Trigger change, you can invoke the syncTriggers()
method over JMX or simply restart the SymmetricDS server.

7.3. Changing Configuration

The configuration of your system as defined in the sym_* tables may be modified at runtime. By default,
any changes made to the sym_* tables (with the exception of sym_node) should be made at the registration
server. The changes will be synchronized out to the leaf nodes by SymmetricDS triggers that are
automatically created on the tables.

If this behavior is not desired, the feature can be turned off using a parameter. Custom triggers may be
added to the sym_* tables when the auto syncing feature is disabled.

7.4. Logging Configuration

The standalone SymmetricDS installation uses Log4J for logging. The configuration file is
conf/log4j.xml. The log4j.xml file has hints as to what logging can be enabled for useful, finer-grained
logging.

SymmetricDS proxies all of its logging through Commons Logging. When deploying to an application
server, if Log4J is not being leveraged, then the general rules for for Commons Logging apply.

7.5. Java Management Extensions

Monitoring and administrative operations can be performed using Java Management Extensions (JMX).
SymmetricDS uses MX4J to expose JMX attributes and operations that can be accessed from the built-in
web console, Java's jconsole, or an application server. By default, the web management console can be
opened from the following address:

http://localhost:31416/

Using the Java jconsole command, SymmetricDS is listed as a local process named SymmetricLauncher.
In jconsole, SymmetricDS appears under the MBeans tab under then name defined by the engine.name

property. The default value is SymmetricDS.

The management interfaces under SymmetricDS are organized as follows:

• Node - administrative operations

• Incoming - statistics about incoming batches

• Outgoing - statistics about outgoing batches

• Parameters - access to properties set through the parameter service

Administration

Symmetric DS v2.2 64

http://logging.apache.org/log4j/1.2/index.html
http://commons.apache.org/logging/

• Notifications - setting thresholds and receiving notifications

7.6. Temporary Files

SymmetricDS creates temporary extraction and data load files with the CSV payload of a synchronization
when the value of the stream.to.file.threshold.bytes SymmetricDS property has been reached. Before
reaching the threshold, files are streamed to/from memory. The default threshold value is 32,767 bytes.
This feature may be turned off by setting the stream.to.file.enabled property to false.

SymmetricDS creates these temporary files in the directory specified by the java.io.tmpdir Java System
property. When SymmmetricDS starts up, stranded temporary files are aways cleaned up. Files will only
be stranded if the SymmetricDS engine is force killed.

The location of the temporary directory may be changed by setting the Java System property passed into
the Java program at startup. For example,

-Djava.io.tmpdir=/home/.symmetricds/tmp

7.7. Database Purging

Purging is the act of cleaning up captured data that is no longer needed in SymmetricDS's runtime tables.
Data is purged through delete statements by the Purge Job. Only data that has been successfully
synchronized will be purged. Purged tables include:

• DATA

• DATA_EVENT

• OUTGOING_BATCH

• INCOMING_BATCH

• DATA_GAP

• NODE_HOST_STATS

• NODE_HOST_CHANNEL_STATS

• NODE_HOST_JOB_STATS

The purge job is enabled by the start.purge.job SymmetricDS property. The job runs periodically
according to the job.purge.period.time.ms property. The default period is to run every ten minutes.

Two retention period properties indicate how much history SymmetricDS will retain before purging. The

Administration

Symmetric DS v2.2 65

purge.retention.minutes property indicates the period of history to keep for synchronization tables. The
default value is 5 days. The statistic.retention.minutes property indicates the period of history to keep
for statistics. The default value is also 5 days.

The purge properties should be adjusted according to how much data is flowing through the system and
the amount of storage space the database has. For an initial deployment it is recommended that the purge
properties be kept at the defaults, since it is often helpful to be able to look at the captured data in order to
triage problems and profile the synchronization patterns. When scaling up to more nodes, it is
recomended that the purge parameters be scaled back to 24 hours or less.

Administration

Symmetric DS v2.2 66

Appendix A. Data Model
What follows is the complete SymmetricDS data model. Note that all tables are prepended with a
configurable prefix so that multiple instances of SymmetricDS may coexist in the same database. The
default prefix is sym_.

SymmetricDS configuration is entered by the user into the data model to control the behavior of what
data is synchronized to which nodes.

Figure A.1. Configuration Data Model

At runtime, the configuration is used to capture data changes and route them to nodes. The data changes
are placed together in a single unit called a batch that can be loaded by another node. Outgoing batches
are delivered to nodes and acknowledged. Incoming batches are received and loaded. History is recorded
for batch status changes and statistics.

Symmetric DS v2.2 67

Figure A.2. Runtime Data Model

A.1. NODE

Representation of an instance of SymmetricDS that synchronizes data with one or more additional nodes.
Each node has a unique identifier (nodeId) that is used when communicating, as well as a domain-specific
identifier (externalId) that provides context within the local system.

Table A.1. NODE

Name Type / Size Default PK
FK

not
null

Description

NODE_ID VARCHAR
(50)

PK X A unique identifier for a node.

NODE_GROUP_ID VARCHAR
(50)

X The node group that this node belongs to, such
as 'store'.

EXTERNAL_ID VARCHAR
(50)

X A domain-specific identifier for context within
the local system. For example, the retail store
number.

SYNC_ENABLED INTEGER (1) 0 Indicates whether this node should be sent
synchronization. Disabled nodes are ignored by
the triggers, so no entries are made in
data_event for the node.

SYNC_URL VARCHAR
(255)

The URL to contact the node for
synchronization.

SCHEMA_VERSION VARCHAR
(50)

The version of the database schema this node
manages. Useful for specifying synchronization
by version.

SYMMETRIC_VERSION VARCHAR The version of SymmetricDS running at this

Data Model

Symmetric DS v2.2 68

Name Type / Size Default PK
FK

not
null

Description

(50) node.

DATABASE_TYPE VARCHAR
(50)

The database product name at this node as
reported by JDBC.

DATABASE_VERSION VARCHAR
(50)

The database product version at this node as
reported by JDBC.

HEARTBEAT_TIME TIMESTAMP The last timestamp when the node sent a
heartbeat, which is attempted every ten minutes
by default.

TIMEZONE_OFFSET VARCHAR
(6)

The timezone offset in RFC822 format at the
time of the last heartbeat.

BATCH_TO_SEND_COUNT INTEGER 0 The number of outgoing batches that have not
yet been sent. This field is updated as part of
the heartbeat job.

BATCH_IN_ERROR_COUNT INTEGER 0 The number of outgoing batches that are in
error at this node. This field is updated as part
of the heartbeat job.

CREATED_AT_NODE_ID VARCHAR
(50)

The node_id of the node where this node was
created. This is typically filled automatically
with the node_id found in node_identity where
registration was opened for the node.

DEPLOYMENT_TYPE VARCHAR
(50)

An indicator as to the type of SymmetricDS
software that is running. Possible values are,
but not limited to: engine, standalone, war,
professional, mobile

A.2. NODE_SECURITY

Security features like node passwords and open registration flag are stored in the node_security table.

Table A.2. NODE_SECURITY

Name Type / Size Default PK
FK

not
null

Description

NODE_ID VARCHAR
(50)

PK X Unique identifier for a node.

NODE_PASSWORD VARCHAR
(50)

X The password used by the node to prove its
identity during synchronization.

REGISTRATION_ENABLED INTEGER (1) 0 Indicates whether registration is open for this
node. Re-registration may be forced for a node
if this is set back to '1' in a parent database for
the node_id that should be re-registred.

REGISTRATION_TIME TIMESTAMP The timestamp when this node was last
registered.

Data Model

Symmetric DS v2.2 69

Name Type / Size Default PK
FK

not
null

Description

INITIAL_LOAD_ENABLED INTEGER (1) 0 Indicates whether an initial load will be sent to
this node.

INITIAL_LOAD_TIME TIMESTAMP The timestamp when this node started the initial
load.

CREATED_AT_NODE_ID VARCHAR
(50)

X The node_id of the node where this node was
created. This is typically filled automatically
with the node_id found in node_identity where
registration was opened for the node.

A.3. NODE_IDENTITY

After registration, this table will have one row representing the identity of the node. For a root node, the
row is entered by the user.

Table A.3. NODE_IDENTITY

Name Type / Size Default PK
FK

not
null

Description

NODE_ID VARCHAR
(50)

PK X Unique identifier for a node.

A.4. NODE_GROUP

A category of Nodes that synchronizes data with one or more NodeGroups. A common use of
NodeGroup is to describe a level in a hierarchy of data synchronization.

Table A.4. NODE_GROUP

Name Type / Size Default PK
FK

not
null

Description

NODE_GROUP_ID VARCHAR
(50)

PK X Unique identifier for a node group, usually
named something meaningful, like 'store' or
'warehouse'.

DESCRIPTION VARCHAR
(255)

A description of this node group.

A.5. NODE_GROUP_LINK

A source node_group sends its data updates to a target NodeGroup using a pull, push, or custom

Data Model

Symmetric DS v2.2 70

technique.

Table A.5. NODE_GROUP_LINK

Name Type / Size Default PK
FK

not
null

Description

SOURCE_NODE_GROUP_ID VARCHAR
(50)

PK X The node group where data changes should be
captured.

TARGET_NODE_GROUP_ID VARCHAR
(50)

PK X The node group where data changes will be
sent.

DATA_EVENT_ACTION CHAR (1) W X The notification scheme used to send data
changes to the target node group. (P = Push, W
= Wait for Pull)

A.6. NODE_HOST

Representation of an physical workstation or server that is hosting the SymmetricDS software. In a
clustered environment there may be more than one entry per node in this table.

Table A.6. NODE_HOST

Name Type / Size Default PK
FK

not
null

Description

NODE_ID VARCHAR
(50)

PK X A unique identifier for a node.

HOST_NAME VARCHAR
(255)

PK X The host name of a workstation or server. If
more than one instance of SymmetricDS runs
on the same server, then this value can be a
'server id' specified by
-Druntime.symmetric.cluster.server.id

IP_ADDRESS VARCHAR
(50)

The ip address for the host.

OS_USER VARCHAR
(50)

The user SymmetricDS is running under

OS_NAME VARCHAR
(50)

The name of the OS

OS_ARCH VARCHAR
(50)

The hardware architecture of the OS

OS_VERSION VARCHAR
(50)

The version of the OS

AVAILABLE_PROCESSORS INTEGER 0 The number of processors available to use.

FREE_MEMORY_BYTES BIGINT 0 The amount of free memory available to the
JVM.

Data Model

Symmetric DS v2.2 71

Name Type / Size Default PK
FK

not
null

Description

TOTAL_MEMORY_BYTES BIGINT 0 The amount of total memory available to the
JVM.

MAX_MEMORY_BYTES BIGINT 0 The max amount of memory available to the
JVM.

JAVA_VERSION VARCHAR
(50)

The version of java that SymmetricDS is
running as.

JAVA_VENDOR VARCHAR
(255)

The vendor of java that SymmetricDS is
running as.

SYMMETRIC_VERSION VARCHAR
(50)

The version of SymmetricDS running at this
node.

TIMEZONE_OFFSET VARCHAR
(6)

The timezone offset in RFC822 format at the
time of the last heartbeat.

HEARTBEAT_TIME TIMESTAMP The last timestamp when the node sent a
heartbeat, which is attempted every ten minutes
by default.

LAST_RESTART_TIME TIMESTAMP X Timestamp when this instance was last
restarted.

CREATE_TIME TIMESTAMP X Timestamp when this entry was created.

A.7. NODE_HOST_CHANNEL_STATS

Table A.7. NODE_HOST_CHANNEL_STATS

Name Type / Size Default PK
FK

not
null

Description

NODE_ID VARCHAR
(50)

PK X A unique identifier for a node.

HOST_NAME VARCHAR
(255)

PK X The host name of a workstation or server. If
more than one instance of SymmetricDS runs
on the same server, then this value can be a
'server id' specified by
-Druntime.symmetric.cluster.server.id

CHANNEL_ID VARCHAR
(20)

PK X The channel_id of the channel that data changes
will flow through.

START_TIME TIMESTAMP PK X

END_TIME TIMESTAMP PK X

DATA_ROUTED BIGINT 0 Indicate the number of data rows that have been
routed during this period.

DATA_UNROUTED BIGINT 0

DATA_EVENT_INSERTED BIGINT 0 Indicate the number of data rows that have been

Data Model

Symmetric DS v2.2 72

Name Type / Size Default PK
FK

not
null

Description

routed during this period.

DATA_EXTRACTED BIGINT 0

DATA_BYTES_EXTRACTED BIGINT 0

DATA_EXTRACTED_ERRORS BIGINT 0

DATA_BYTES_SENT BIGINT 0

DATA_SENT BIGINT 0

DATA_SENT_ERRORS BIGINT 0

DATA_LOADED BIGINT 0

DATA_BYTES_LOADED BIGINT 0

DATA_LOADED_ERRORS BIGINT 0

A.8. NODE_HOST_STATS

Table A.8. NODE_HOST_STATS

Name Type / Size Default PK
FK

not
null

Description

NODE_ID VARCHAR
(50)

PK X A unique identifier for a node.

HOST_NAME VARCHAR
(255)

PK X The host name of a workstation or server. If
more than one instance of SymmetricDS runs
on the same server, then this value can be a
'server id' specified by
-Druntime.symmetric.cluster.server.id

START_TIME TIMESTAMP PK X

END_TIME TIMESTAMP PK X

RESTARTED BIGINT 0 X Indicate that a restart occurred during this
period.

NODES_PULLED BIGINT 0

TOTAL_NODES_PULL_TIME BIGINT 0

NODES_PUSHED BIGINT 0

TOTAL_NODES_PUSH_TIME BIGINT 0

NODES_REJECTED BIGINT 0

NODES_REGISTERED BIGINT 0

NODES_LOADED BIGINT 0

NODES_DISABLED BIGINT 0

Data Model

Symmetric DS v2.2 73

Name Type / Size Default PK
FK

not
null

Description

PURGED_DATA_ROWS BIGINT 0

PURGED_DATA_EVENT_ROWS BIGINT 0

PURGED_BATCH_OUTGOING_ROWSBIGINT 0

PURGED_BATCH_INCOMING_ROWSBIGINT 0

TRIGGERS_CREATED_COUNT BIGINT

TRIGGERS_REBUILT_COUNT BIGINT

TRIGGERS_REMOVED_COUNT BIGINT

A.9. NODE_HOST_JOB_STATS

Table A.9. NODE_HOST_JOB_STATS

Name Type / Size Default PK
FK

not
null

Description

NODE_ID VARCHAR
(50)

PK X A unique identifier for a node.

HOST_NAME VARCHAR
(255)

PK X The host name of a workstation or server. If
more than one instance of SymmetricDS runs
on the same server, then this value can be a
'server id' specified by
-Druntime.symmetric.cluster.server.id

JOB_NAME VARCHAR
(50)

PK X

START_TIME TIMESTAMP PK X

END_TIME TIMESTAMP PK X

PROCESSED_COUNT BIGINT 0

A.10. CHANNEL

This table represents a category of data that can be synchronized independently of other channels.
Channels allow control over the type of data flowing and prevents one type of synchronization from
contending with another.

Table A.10. CHANNEL

Data Model

Symmetric DS v2.2 74

Name Type / Size Default PK
FK

not
null

Description

CHANNEL_ID VARCHAR
(20)

PK X A unique identifer, usually named something
meaningful, like 'sales' or 'inventory'.

PROCESSING_ORDER INTEGER 1 X Order of sequence to process channel data.

MAX_BATCH_SIZE INTEGER 1000 X The maximum number of Data Events to
process within a batch for this channel.

MAX_BATCH_TO_SEND INTEGER 60 X The maximum number of batches to send
during a 'synchronization' between two nodes.
A 'synchronization' is equivalent to a push or a
pull. If there are 12 batches ready to be sent for
a channel and max_batch_to_send is equal to
10, then only the first 10 batches will be sent.

MAX_DATA_TO_ROUTE INTEGER 100000 X The maximum number of data rows to route for
a channel at a time.

EXTRACT_PERIOD_MILLIS INTEGER 0 X The minimum number of milliseconds allowed
between attempts to extract data for targeted at
a node_id.

ENABLED INTEGER (1) 1 X Indicates whether channel is enabled or not.

USE_OLD_DATA_TO_ROUTE INTEGER (1) 1 X Indicates whether to read the old data during
routing.

USE_ROW_DATA_TO_ROUTE INTEGER (1) 1 X Indicates whether to read the row data during
routing.

USE_PK_DATA_TO_ROUTE INTEGER (1) 1 X Indicates whether to read the pk data during
routing.

CONTAINS_BIG_LOB INTEGER (1) 0 X Provides SymmetricDS a hint as to whether this
channel will contain big lobs data. Some
databases have shortcuts that SymmetricDS can
take advantage of if it knows that the lob
columns in sym_data aren't going to contain
large lobs. The definition of how big a 'large'
lob is will differ from database to database.

BATCH_ALGORITHM VARCHAR
(50)

default X The algorithm to use when batching data on this
channel. Possible values are: 'default',
'transactional', and 'nontransactional'

DESCRIPTION VARCHAR
(255)

Description on the type of data carried in this
channel.

A.11. NODE_CHANNEL_CTL

Used to ignore or suspend a channel. A channel that is ignored will have its data_events batched and they
will immediately be marked as 'OK' without sending them. A channel that is suspended is skipped when
batching data_events.

Data Model

Symmetric DS v2.2 75

Table A.11. NODE_CHANNEL_CTL

Name Type / Size Default PK
FK

not
null

Description

NODE_ID VARCHAR
(50)

PK X Unique identifier for a node.

CHANNEL_ID VARCHAR
(20)

PK X The name of the channel_id that is being
controlled.

SUSPEND_ENABLED INTEGER (1) 0 Indicates if this channel is suspended, which
prevents its Data Events from being batched.

IGNORE_ENABLED INTEGER (1) 0 Indicates if this channel is ignored, which
marks its Data Events as if they were actually
processed.

LAST_EXTRACT_TIME TIMESTAMP Record the last time data was extract for a node
and a channel.

A.12. NODE_GROUP_CHANNEL_WINDOW

An optional window of time for which a node group and channel will be active.

Table A.12. NODE_GROUP_CHANNEL_WINDOW

Name Type / Size Default PK
FK

not
null

Description

NODE_GROUP_ID VARCHAR
(50)

PK X The node_group_id that this window applies to.

CHANNEL_ID VARCHAR
(20)

PK X The channel_id that this window applies to.

START_TIME TIME PK X The start time for the active window.

END_TIME TIME PK X The end time for the active window. Note that
if the end_time is less than the start_time then
the window crosses a day boundary.

ENABLED INTEGER (1) 0 X Enable this window. If this is set to '0' then this
window is ignored.

A.13. TRIGGER

Configures database triggers that capture changes in the database. Configuration of which triggers are
generated for which tables is stored here. Triggers are created in a node's database if the
source_node_group_id of a router is mapped to a row in this table.

Data Model

Symmetric DS v2.2 76

Table A.13. TRIGGER

Name Type / Size Default PK
FK

not
null

Description

TRIGGER_ID VARCHAR
(50)

PK X Unique identifier for a trigger.

SOURCE_CATALOG_NAME VARCHAR
(50)

Optional name for the catalog the configured
table is in.

SOURCE_SCHEMA_NAME VARCHAR
(50)

Optional name for the schema a configured
table is in.

SOURCE_TABLE_NAME VARCHAR
(50)

X The name of the source table that will have a
trigger installed to watch for data changes.

CHANNEL_ID VARCHAR
(20)

X The channel_id of the channel that data changes
will flow through.

SYNC_ON_UPDATE INTEGER (1) 1 X Whether or not to install an update trigger.

SYNC_ON_INSERT INTEGER (1) 1 X Whether or not to install an insert trigger.

SYNC_ON_DELETE INTEGER (1) 1 X Whether or not to install an delete trigger.

SYNC_ON_INCOMING_BATCH INTEGER (1) 0 X Whether or not an incoming batch that loads
data into this table should cause the triggers to
capture data_events. Be careful turning this on,
because an update loop is possible.

NAME_FOR_UPDATE_TRIGGER VARCHAR
(50)

Override the default generated name for the
update trigger.

NAME_FOR_INSERT_TRIGGER VARCHAR
(50)

Override the default generated name for the
insert trigger.

NAME_FOR_DELETE_TRIGGER VARCHAR
(50)

Override the default generated name for the
delete trigger.

SYNC_ON_UPDATE_CONDITION LONGVARCHAR Specify a condition for the update trigger firing
using an expression specific to the database.

SYNC_ON_INSERT_CONDITION LONGVARCHAR Specify a condition for the insert trigger firing
using an expression specific to the database.

SYNC_ON_DELETE_CONDITION LONGVARCHAR Specify a condition for the delete trigger firing
using an expression specific to the database.

EXTERNAL_SELECT LONGVARCHAR Specify a SQL select statement that returns a
single result. It will be used in the generated
database trigger to populate the
EXTERNAL_DATA field on the data table.

TX_ID_EXPRESSION LONGVARCHAR Override the default expression for the
transaction identifier that groups the data
changes that were committed together.

EXCLUDED_COLUMN_NAMES LONGVARCHAR Specify a comma-delimited list of columns that
should not be synchronized from this table.
Note that if a primary key is found in this list, it
will be ignored.

Data Model

Symmetric DS v2.2 77

Name Type / Size Default PK
FK

not
null

Description

CREATE_TIME TIMESTAMP X Timestamp when this entry was created.

LAST_UPDATE_BY VARCHAR
(50)

The user who last updated this entry.

LAST_UPDATE_TIME TIMESTAMP X Timestamp when a user last updated this entry.

A.14. ROUTER

Configure a type of router from one node group to another. Note that routers are mapped to triggers
through trigger_routers.

Table A.14. ROUTER

Name Type / Size Default PK
FK

not
null

Description

ROUTER_ID VARCHAR
(50)

PK X Unique description of a specific router

TARGET_CATALOG_NAME VARCHAR
(50)

Optional name for the catalog a target table is
in. Only use this if the target table is not in the
default catalog.

TARGET_SCHEMA_NAME VARCHAR
(50)

Optional name of the schema a target table is
in. On use this if the target table is not in the
default schema.

TARGET_TABLE_NAME VARCHAR
(50)

Optional name for a target table. Only use this
if the target table name is different than the
source.

SOURCE_NODE_GROUP_ID VARCHAR
(50)

X Routers with this node_group_id will install
triggers that are mapped to this router.

TARGET_NODE_GROUP_ID VARCHAR
(50)

X The node_group_id for nodes to route data to.
Note that routing can be further narrowed down
by the configured router_type and
router_expression.

ROUTER_TYPE VARCHAR
(50)

The name of a specific type of router. Out of
the box routers are 'default','column','bsh', and
'subselect.' Custom routers can be configured as
extension points.

ROUTER_EXPRESSION LONGVARCHAR An expression that is specific to the type of
router that is configured in router_type. See the
documentation for each router for more details.

SYNC_ON_UPDATE INTEGER (1) 1 X Flag that indicates that this router should route
updates.

SYNC_ON_INSERT INTEGER (1) 1 X Flag that indicates that this router should route
inserts.

Data Model

Symmetric DS v2.2 78

Name Type / Size Default PK
FK

not
null

Description

SYNC_ON_DELETE INTEGER (1) 1 X Flag that indicates that this router should route
deletes.

CREATE_TIME TIMESTAMP X Timestamp when this entry was created.

LAST_UPDATE_BY VARCHAR
(50)

The user who last updated this entry.

LAST_UPDATE_TIME TIMESTAMP X Timestamp when a user last updated this entry.

A.15. TRIGGER_ROUTER

Map a trigger to a router.

Table A.15. TRIGGER_ROUTER

Name Type / Size Default PK
FK

not
null

Description

TRIGGER_ID VARCHAR
(50)

PK X The id of a trigger.

ROUTER_ID VARCHAR
(50)

PK X The id of a router.

INITIAL_LOAD_ORDER INTEGER 1 X Order sequence of this table when an initial
load is sent to a node.

INITIAL_LOAD_SELECT LONGVARCHAR Optional expression that can be used to pair
down the data selected from a table during the
initial load process.

PING_BACK_ENABLED INTEGER (1) 0 X When enabled, the node will route data that
originated from a node back to that node. This
attribute is only effective if
sync_on_incoming_batch is set to 1.

CREATE_TIME TIMESTAMP X Timestamp when this entry was created.

LAST_UPDATE_BY VARCHAR
(50)

The user who last updated this entry.

LAST_UPDATE_TIME TIMESTAMP X Timestamp when a user last updated this entry.

A.16. PARAMETER

Provides a way to manage most SymmetricDS settings in the database.

Table A.16. PARAMETER

Data Model

Symmetric DS v2.2 79

Name Type / Size Default PK
FK

not
null

Description

EXTERNAL_ID VARCHAR
(50)

PK X Target the parameter at a specific external id.
To target all nodes, use the value of 'ALL.'

NODE_GROUP_ID VARCHAR
(50)

PK X Target the parameter at a specific node group
id. To target all groups, use the value of 'ALL.'

PARAM_KEY VARCHAR
(100)

PK X The name of the parameter.

PARAM_VALUE LONGVARCHAR The value of the parameter.

A.17. REGISTRATION_REDIRECT

Provides a way for a centralized registration server to redirect registering nodes to their prospective
parent node in a multi-tiered deployment.

Table A.17. REGISTRATION_REDIRECT

Name Type / Size Default PK
FK

not
null

Description

REGISTRANT_EXTERNAL_ID VARCHAR
(50)

PK X Maps the external id of a registration request to
a different parent node.

REGISTRATION_NODE_ID VARCHAR
(50)

X The node_id of the node that a registration
request should be redirected to.

A.18. REGISTRATION_REQUEST

Audits when a node registers or attempts to register.

Table A.18. REGISTRATION_REQUEST

Name Type / Size Default PK
FK

not
null

Description

NODE_GROUP_ID VARCHAR
(50)

The node group that this node belongs to, such
as 'store'.

EXTERNAL_ID VARCHAR
(50)

A domain-specific identifier for context within
the local system. For example, the retail store
number.

STATUS CHAR (2) X The current status of the registration attempt.
Valid statuses are NR (not registered), IG
(ignored), OK (sucessful)

HOST_NAME VARCHAR
(255)

X The host name of a workstation or server. If
more than one instance of SymmetricDS runs

Data Model

Symmetric DS v2.2 80

Name Type / Size Default PK
FK

not
null

Description

on the same server, then this value can be a
'server id' specified by
-Druntime.symmetric.cluster.server.id

IP_ADDRESS VARCHAR
(50)

X The ip address for the host.

ATTEMPT_COUNT INTEGER 0 The number of registration attempts.

REGISTERED_NODE_ID VARCHAR
(50)

A unique identifier for a node.

CREATE_TIME TIMESTAMP X Timestamp when this entry was created.

LAST_UPDATE_BY VARCHAR
(50)

The user who last updated this entry.

LAST_UPDATE_TIME TIMESTAMP X Timestamp when a user last updated this entry.

A.19. TRIGGER_HIST

A history of a table's definition and the trigger used to capture data from the table. When a database
trigger captures a data change, it references a trigger_hist entry so it is possible to know which columns
the data represents. trigger_hist entries are made during the sync trigger process, which runs at each
startup, each night in the syncTriggersJob, or any time the syncTriggers() JMX method is manually
invoked. A new entry is made when a table definition or a trigger definition is changed, which causes a
database trigger to be created or rebuilt.

Table A.19. TRIGGER_HIST

Name Type / Size Default PK
FK

not
null

Description

TRIGGER_HIST_ID INTEGER PK X Unique identifier for a trigger_hist entry

TRIGGER_ID VARCHAR
(50)

X Unique identifier for a trigger

SOURCE_TABLE_NAME VARCHAR
(50)

X The name of the source table that will have a
trigger installed to watch for data changes.

SOURCE_CATALOG_NAME VARCHAR
(50)

The catalog name where the source table
resides.

SOURCE_SCHEMA_NAME VARCHAR
(50)

The schema name where the source table
resides.

NAME_FOR_UPDATE_TRIGGER VARCHAR
(50)

X The name used when the insert trigger was
created.

NAME_FOR_INSERT_TRIGGER VARCHAR
(50)

X The name used when the update trigger was
created.

NAME_FOR_DELETE_TRIGGER VARCHAR
(50)

X The name used when the delete trigger was
created.

Data Model

Symmetric DS v2.2 81

Name Type / Size Default PK
FK

not
null

Description

TABLE_HASH BIGINT X A hash of the table definition, used to detect
changes in the definition.

TRIGGER_ROW_HASH BIGINT X A hash of the trigger definition. If changes are
detected to the values that affect a trigger
definition, then the trigger will be regenerated.

COLUMN_NAMES LONGVARCHAR X The column names defined on the table. The
column names are stored in comma-separated
values (CSV) format.

PK_COLUMN_NAMES LONGVARCHAR X The primary key column names defined on the
table. The column names are stored in
comma-separated values (CSV) format.

LAST_TRIGGER_BUILD_REASONCHAR (1) X The following reasons for a change are
possible: New trigger that has not been created
before (N); Schema changes in the table were
detected (S); Configuration changes in Trigger
(C); Trigger was missing (T).

CREATE_TIME TIMESTAMP X Timestamp when this entry was created.

INACTIVE_TIME TIMESTAMP The date and time when a trigger was
inactivated.

A.20. DATA

The captured data change that occurred to a row in the database. Entries in data are created by database
triggers.

Table A.20. DATA

Name Type / Size Default PK
FK

not
null

Description

DATA_ID INTEGER PK X Unique identifier for a data.

TABLE_NAME VARCHAR
(50)

X The name of the table in which a change
occurred that this entry records.

EVENT_TYPE CHAR (1) X The type of event captured by this entry. For
triggers, this is the change that occurred, which
is 'I' for insert, 'U' for update, or 'D' for delete.
Other events include: 'R' for reloading the entire
table (or subset of the table) to the node; 'S' for
running dynamic SQL at the node, which is
used for adhoc administration.

ROW_DATA LONGVARCHAR The captured data change from the
synchronized table. The column values are
stored in comma-separated values (CSV)
format.

PK_DATA LONGVARCHAR The primary key values of the captured data

Data Model

Symmetric DS v2.2 82

Name Type / Size Default PK
FK

not
null

Description

change from the synchronized table. This data
is captured for updates and deletes. The primary
key values are stored in comma-separated
values (CSV) format.

OLD_DATA LONGVARCHAR The captured data values prior to the update.
The column values are stored in CSV format.

TRIGGER_HIST_ID INTEGER X The foreign key to the trigger_hist entry that
contains the primary key and column names for
the table being synchronized.

CHANNEL_ID VARCHAR
(20)

The channel that this data belongs to, such as
'prices'

TRANSACTION_ID VARCHAR
(255)

An optional transaction identifier that links
multiple data changes together as the same
transaction.

SOURCE_NODE_ID VARCHAR
(50)

If this data was capture

EXTERNAL_DATA VARCHAR
(50)

A field that can be populated by a trigger that
uses the EXTERNAL_SELECT

CREATE_TIME TIMESTAMP Timestamp when this entry was created.

A.21. DATA_REF

Used only when routing.data.reader.type is set to 'ref.' Table that tracks the last known data_id that has
been processed. This table is used so that joins to find unprocessed data can be better optimized.

Table A.21. DATA_REF

Name Type / Size Default PK
FK

not
null

Description

REF_DATA_ID INTEGER PK X The data_id that can be used to limit the search
of the data table to rows that are greater than
this data_id value.

REF_TIME TIMESTAMP The time when the ref_data_id was recorded. It
is used as the base time to calculate timeouts
for gaps in the data_ids.

A.22. DATA_GAP

Used only when routing.data.reader.type is set to 'gap.' Table that tracks gaps in the data table so that they
may be processed efficiently, if data shows up. Gaps can show up in the data table if a database
transaction is rolled back.

Data Model

Symmetric DS v2.2 83

Table A.22. DATA_GAP

Name Type / Size Default PK
FK

not
null

Description

START_ID INTEGER PK X The first missing data_id from the data table
where a gap is detected. This could be the last
data_id inserted plus one.

END_ID INTEGER PK X The last missing data_id from the data table
where a gap is detected. If the start_id is the last
data_id inserted plus one, then this field is filled
in with a -1.

STATUS CHAR (2) GP, SK, or FL. GP means there is a detected
gap. FL means that the gap has been filled. SK
means that the gap has been skipped either
because the gap expired or because no database
transaction was detected which means that no
data will be committed to fill in the gap.

CREATE_TIME TIMESTAMP X Timestamp when this entry was created.

LAST_UPDATE_HOSTNAME VARCHAR
(255)

The host who last updated this entry.

LAST_UPDATE_TIME TIMESTAMP X Timestamp when a user last updated this entry.

A.23. DATA_EVENT

Represents routing of a data row to one or more nodes. Entries in data_event are created by database
triggers.

Table A.23. DATA_EVENT

Name Type / Size Default PK
FK

not
null

Description

DATA_ID INTEGER PK X Id of the data to be routed.

BATCH_ID INTEGER -1 PK X The node_id of the node that is to receive the
data.

ROUTER_ID VARCHAR
(50)

PK X The router_id of the router that routed this
data_event.

CREATE_TIME TIMESTAMP Timestamp when this entry was created.

A.24. OUTGOING_BATCH

Used for tracking the sending a collection of data to a node in the system. A new outgoing_batch is

Data Model

Symmetric DS v2.2 84

created and given a status of 'NE'. After sending the outgoing_batch to its target node, the status becomes
'SE'. The node responds with either a success status of 'OK' or an error status of 'ER'. An error while
sending to the node also results in an error status of 'ER' regardless of whether the node sends that
acknowledgement.

Table A.24. OUTGOING_BATCH

Name Type / Size Default PK
FK

not
null

Description

BATCH_ID INTEGER PK X A unique id for the batch.

NODE_ID VARCHAR
(50)

The node that this batch is targeted at.

CHANNEL_ID VARCHAR
(20)

The channel that this batch is part of.

STATUS CHAR (2) The current status of the Batch can be newly
created (NE), sent to a Node (SE),
acknowledged as successful (OK), and error
(ER).

LOAD_FLAG INTEGER (1) 0 A flag that indicates that this batch is part of an
initial load.

ERROR_FLAG INTEGER (1) 0 A flag that indicates that this batch was in error
during the last synchornization attempt.

BYTE_COUNT BIGINT 0 X The number of bytes that were sent as part of
this batch.

EXTRACT_COUNT BIGINT 0 X The number of times this an attempt to extract
this batch occurred.

SENT_COUNT BIGINT 0 X The number of times this batch was sent. A
batch can be sent multiple times if an ACK is
not received.

LOAD_COUNT BIGINT 0 X The number of times an attempt to load this
batch occurred.

DATA_EVENT_COUNT BIGINT 0 X The number of data_events that are part of this
batch.

RELOAD_EVENT_COUNT BIGINT 0 X The number of reload events that are part of
this batch.

INSERT_EVENT_COUNT BIGINT 0 X The number of insert events that are part of this
batch.

UPDATE_EVENT_COUNT BIGINT 0 X The number of update events that are part of
this batch.

DELETE_EVENT_COUNT BIGINT 0 X The number of delete events that are part of this
batch.

OTHER_EVENT_COUNT BIGINT 0 X The number of other event types that are part of
this batch. This includes any events types that
are not a reload, insert, update or delete event
type.

Data Model

Symmetric DS v2.2 85

Name Type / Size Default PK
FK

not
null

Description

ROUTER_MILLIS BIGINT 0 X The number of milliseconds spent creating this
batch.

NETWORK_MILLIS BIGINT 0 X The number of milliseconds spent transfering
this batch across the network.

FILTER_MILLIS BIGINT 0 X The number of milliseconds spent in filters
processing data.

LOAD_MILLIS BIGINT 0 X The number of milliseconds spent loading the
data into the target database.

EXTRACT_MILLIS BIGINT 0 X The number of milliseconds spent extracting
the data out of the source database.

SQL_STATE VARCHAR
(10)

For a status of error (ER), this is the XOPEN or
SQL 99 SQL State.

SQL_CODE INTEGER 0 X For a status of error (ER), this is the error code
from the database that is specific to the vendor.

SQL_MESSAGE LONGVARCHAR For a status of error (ER), this is the error
message that describes the error.

FAILED_DATA_ID BIGINT 0 X For a status of error (ER), this is the data_id
that was being processed when the batch failed.

LAST_UPDATE_HOSTNAME VARCHAR
(255)

The host name of the process that last did work
on this batch.

LAST_UPDATE_TIME TIMESTAMP Timestamp when a process last updated this
entry.

CREATE_TIME TIMESTAMP Timestamp when this entry was created.

A.25. INCOMING_BATCH

The incoming_batch is used for tracking the status of loading an outgoing_batch from another node. Data
is loaded and commited at the batch level. The status of the incoming_batch is either successful (OK) or
error (ER).

Table A.25. INCOMING_BATCH

Name Type / Size Default PK
FK

not
null

Description

BATCH_ID INTEGER
(50)

PK X The id of the outgoing_batch that is being
loaded.

NODE_ID VARCHAR
(50)

PK X The node_id of the source of the batch being
loaded.

CHANNEL_ID VARCHAR
(20)

The channel_id of the batch being loaded.

STATUS CHAR (2) The current status of the batch can be loading

Data Model

Symmetric DS v2.2 86

Name Type / Size Default PK
FK

not
null

Description

(LD), successfully loaded (OK), in error (ER)
or skipped (SK)

ERROR_FLAG INTEGER (1) 0 A flag that indicates that this batch was in error
during the last synchornization attempt.

NETWORK_MILLIS BIGINT 0 X The number of milliseconds spent transfering
this batch across the network.

FILTER_MILLIS BIGINT 0 X The number of milliseconds spent in filters
processing data.

DATABASE_MILLIS BIGINT 0 X The number of milliseconds spent loading the
data into the target database.

FAILED_ROW_NUMBER BIGINT 0 X For a status of error (ER), this is the data_id
that was being processed when the batch failed.

BYTE_COUNT BIGINT 0 X The number of bytes that were sent as part of
this batch.

STATEMENT_COUNT BIGINT 0 X The number of statements run to load this
batch.

FALLBACK_INSERT_COUNT BIGINT 0 X The number of times an update was turned into
an insert because the data was not already in the
target database.

FALLBACK_UPDATE_COUNT BIGINT 0 X The number of times an insert was turned into
an update because a data row already existed in
the target database.

MISSING_DELETE_COUNT BIGINT 0 X THe number of times a delete did not effect the
database because the row was already deleted.

SKIP_COUNT BIGINT 0 X The number of times a batch was sent and
skipped because it had already been loaded
according to incoming_batch

SQL_STATE VARCHAR
(10)

For a status of error (ER), this is the XOPEN or
SQL 99 SQL State.

SQL_CODE INTEGER 0 X For a status of error (ER), this is the error code
from the database that is specific to the vendor.

SQL_MESSAGE LONGVARCHAR For a status of error (ER), this is the error
message that describes the error.

LAST_UPDATE_HOSTNAME VARCHAR
(255)

The host name of the process that last did work
on this batch.

LAST_UPDATE_TIME TIMESTAMP Timestamp when a process last updated this
entry.

CREATE_TIME TIMESTAMP Timestamp when this entry was created.

A.26. LOCK

Data Model

Symmetric DS v2.2 87

Contains semaphores that are set when processes run, so that only one server can run a process at a time.
Enable this feature by using the cluster.lock.during.xxxx parameters.

Table A.26. LOCK

Name Type / Size Default PK
FK

not
null

Description

LOCK_ACTION VARCHAR
(50)

PK X The process that needs a lock.

LOCKING_SERVER_ID VARCHAR
(255)

The name of the server that currently has a
lock. This is typically a host name, but it can be
overridden using the
-Druntime.symmetric.cluster.server.id=name
System property.

LOCK_TIME TIMESTAMP The time a lock is aquired. Use the
cluster.lock.timeout.ms to specify a lock
timeout period.

LAST_LOCK_TIME TIMESTAMP Timestamp when a process last updated this
entry.

LAST_LOCKING_SERVER_ID VARCHAR
(255)

The server id of the process that last did work
on this batch.

Data Model

Symmetric DS v2.2 88

Appendix B. Parameters
There are two kinds of parameters that can be used to configure the behavior of SymmetricDS: Startup
Parameters and Runtime Parameters. Startup Parameters are required to be in a system property or a
property file, while Runtime Parameters can also be found in the Parameter table from the database.
Parameters are re-queried from their source at a configured interval and can also be refreshed on demand
by using the JMX API. The following table shows the source of parameters and the hierarchy of
precedence.

Table B.1. Parameter Locations

Location Required Description

symmetric-default.properties Y Packaged inside symmetric-ds.jar file. This file has all the default
settings along with descriptions.

symmetric.properties N Provided by the end user on the classpath. The first
symmetric.properties found on the classpath will be used.

symmetric.properties N Provided by the end user in the current system user's user.home
directory.

named properties file 1 N Provided by the end user as a Java system property (i.e.
-Dsymmetric.override.properties.file.1=file://my.properties) or in the
constructor of a SymmetricEngine .

named properties file 2 N Provided by the end user as a Java system property (i.e.
-Dsymmetric.override.properties.file.2=classpath://my.properties) or
in the constructor of a SymmetricEngine .

Java System Properties N Any SymmetricDS property can be passed in as a -D property to the
runtime. It will take precedence over any properties file property.

Parameter table N A table which contains SymmetricDS parameters. Parameters can be
targeted at a specific node group and even at a specific external id.
These settings will take precedence over all of the above.

IParameterFilter N An extension point which allows parameters to be sourced from
another location or customized. These settings will take precedence
over all of the above.

B.1. Startup Parameters

Startup parameters are read once from properties files and apply only during start up. The following
properties are used:

db.jndi.name
The name of the database connection pool to use, which is registered in the JNDI directory tree of the
application server. It is recommended that this DataSource is NOT transactional, because
SymmetricDS will handle its own transactions. If NOT using a JNDI connection pool, you must
provide information about the database connection using the db.driver , db.url , db.user , and
db.password properties instead, which will create a pool of connections using the db.pool properties.

Symmetric DS v2.2 89

[Default:]

db.driver
The class name of the JDBC driver. If db.jndi.name is set, this property is ignored.
[Default: com.mysql.jdbc.Driver]

db.url
The JDBC URL used to connect to the database. If db.jndi.name is set, this property is ignored.
[Default: jdbc:mysql://localhost/symmetric]

db.user
The database username, which is used to login, create, and update SymmetricDS tables. To use an
encrypted username, see Section 5.7, Encrypted Passwords (p. 50) . If db.jndi.name is set, this
property is ignored. [Default: symmetric]

db.password
The password for the database user. To use an encrypted password, see Section 5.7, Encrypted
Passwords (p. 50) . If db.jndi.name is set, this property is ignored. [Default:]

db.pool.initial.size
The initial size of the connection pool. If db.jndi.name is set, this property is ignored. [Default: 5]

db.pool.max.active
The maximum number of connections that will be allocated in the pool. If db.jndi.name is set, this
property is ignored. [Default: 10]

db.pool.max.wait.millis
This is how long a request for a connection from the datasource will wait before giving up. If
db.jndi.name is set, this property is ignored. [Default: 30000]

db.pool.min.evictable.idle.millis
This is how long a connection can be idle before it will be evicted. If db.jndi.name is set, this property
is ignored. [Default: 120000]

db.spring.bean.name
The name of a Spring bean to use as the DataSource. If you want to use a different DataSource other
than the provided DBCP version that SymmetricDS uses out of the box, you may set this to be the
Spring bean name of your DataSource.

db.sql.query.timeout.seconds
The timeout in seconds for queries running on the database. [Default: 300]

db.tx.timeout.seconds
This is how long the default transaction time is. This needs to be fairly big to account for large data
loads. [Default: 7200]

db.jdbc.streaming.results.fetch.size
This is the default fetch size for streaming result sets into memory from the database.
[Default: 1000]

db.default.schema

Parameters

Symmetric DS v2.2 90

This is the schema that will be used for metadata lookup. Some dialect automatically figure this out
using database specific SQL to get the current schema. [Default:]

db.metadata.ignore.case
Indicates that case should be ignored when looking up references to tables using the metadata api.
[Default: true]

auto.config.database
If this is true, the configuration and runtime tables used by SymmetricDS are automatically created
during startup. [Default: true]

auto.upgrade
If this is true, when symmetric starts up it will try to upgrade tables to latest version. [Default: true]

auto.sync.configuration
If this is true, create triggers for the SymmetricDS configuration table that will synchronize changes
to node groups that pull from the node where this property is set. [Default: true]

https.allow.self.signed.certs
If this is true, a Symmetric client node to accept self signed certificates. [Default: true]

http.basic.auth.username
If specified, a Symmetric client node will use basic authentication when communicating with its
server node using the given user name. [Default:]

http.basic.auth.password
If specified, the password used for basic authentication. [Default:]

embedded.webserver.basic.auth.username
If specified, the username for basic authentication for an embedded server or standalone server node.
Specifying the username and password is all that's needed to enable basic authentication for an
embedded server or standalone server node. [Default:]

embedded.webserver.basic.auth.password
If specified, the password for basic authentication for an embedded server or standalone server node.
[Default:]

https.verified.server.names
A list of comma separated server names that will always verify when using https. This is useful if the
URL's hostname and the server's identification hostname don't match exactly using the default rules
for the JRE. A special value of "all" may be specified to allow all hostnames to verify. [Default:]

sync.table.prefix
When symmetric tables are created and accessed, this is the prefix to use for the table name.
[Default: sym]

engine.name
This is the engine name. This should be set if you have more than one engine running in the same
JVM. It is used to name the JMX management bean. [Default: Default]

start.push.job

Parameters

Symmetric DS v2.2 91

Whether the push job is enabled for this node. [Default: true]

start.pull.job
Whether the pull job is enabled for this node. [Default: true]

start.purge.job
Whether the purge job is enabled for this node. [Default: true]

start.synctriggers.job
Whether the sync triggers job is enabled for this node. [Default: true]

start.heartbeat.job
Whether the heartbeat job is enabled for this node. The heartbeat job simply inserts an event to update
the heartbeat_time column on the node table for the current node. [Default: true]

start.watchdog.job
Whether the watchdog job is enabled for this node. The watchdog job monitors child nodes to detect
if they are offline. Refer to Section 6.15, IOfflineServerListener (p. 59) for more information.
[Default: true]

job.purge.period.time.ms
This is how often the purge job will be run. [Default: 600000]

job.statflush.period.time.ms
This is how often accumulated statistics will be flushed out to the database from memory.
[Default: 600000]

web.base.servlet.path
The base servlet path for when embedding SymmetricDS with in another web application.
[Default:]

B.2. Runtime Parameters

Runtime parameters are read periodically from properties files or the database. The following properties
are used:

auto.registration
If this is true, registration is opened automatically for nodes requesting it. [Default: false]

auto.reload
If this is true, a reload is automatically sent to nodes when they register. [Default: false]

auto.update.node.values.from.properties
Update the node row in the database from the local properties during a heartbeat operation.
[Default: true]

http.download.rate.kb
This is the download rate for the HTTP symmetric transport. A value of -1 means full throttle.
[Default: -1]

Parameters

Symmetric DS v2.2 92

http.concurrent.workers.max
This is the number of HTTP concurrent push/pull requests symmetric will accept. This is controlled
by the NodeConcurrencyFilter. The maximum number of database connections in the database pool
should be set to twice this number.[Default: 20]

offline.node.detection.period.minutes
This is the minimum number of minutes that a child node has been offline before taking action. Refer
to Section 6.15, IOfflineServerListener (p. 59) for more information. [Default: 120]

outgoing.batches.peek.ahead.window.after.max.size
This is the maximum number of events that will be peeked at to look for additional transaction rows
after the max batch size is reached. The more concurrency in your db and the longer the transaction
takes the bigger this value might have to be. [Default: 100]

incoming.batches.skip.duplicates
Whether or not to skip duplicate batches that are received. A duplicate batch is identified by the batch
ID already existing in the incoming batch table. If this happens, it means an acknowledgement was
lost due to failure or there is a bug. Accepting a duplicate batch in this case can mean overwriting data
with old data. Another cause of duplicates is when the batch sequence number is reset, which might
happen in a lab environement. Skipping a duplicate batch in this case would prevent data changes
from loading. Generally, in a production envionment, this setting should be true. [Default: true]

num.of.ack.retries
This is the number of times we will attempt to send an ACK back to the remote node when pulling
and loading data. [Default: 5]

time.between.ack.retries.ms
This is the amount of time to wait between trying to send an ACK back to the remote node when
pulling and loading data. [Default: 5000]

dataextractor.enabled
Enable or disable all data extraction at a node for all channels other than the config channel.
[Default: true]

dataloader.enabled
Enable or disable all data loading at a node for all channels other than the config channel.
[Default: true]

dataloader.enable.fallback.update
If an insert is received, but the row already exists, then try an update instead. [Default: true]

dataloader.enable.fallback.insert
If an update is received, but it affects no rows, then try to insert instead. [Default: true]

dataloader.allow.missing.delete
If a delete is received, but it affects no rows, then continue. [Default: true]

cluster.server.id
Set this if you want to give your server a unique name to be used to identify which server did what
action. Typically useful when running in a clustered environment. This is currently used by the

Parameters

Symmetric DS v2.2 93

ClusterService when locking for a node. [Default:]

cluster.lock.timeout.ms
Time limit of lock before it is considered abandoned and can be broken. [Default: 1800000]

cluster.lock.enabled
[Default: false]

initial.load.delete.first
Set this if tables should be purged prior to an initial load. [Default: false]

initial.load.create.first
Set this if tables (and their indexes) should be created prior to an initial load. [Default: false]

http.timeout.ms
Sets both the connection and read timeout on the internal HttpUrlConnection. [Default: 600000s]

http.compression
Whether or not to use compression over HTTP connections. Currently, this setting only affects the
push connection of the source node. Compression on a pull is enabled using a filter in the web.xml for
the PullServlet. [Default: true]

web.compression.disabled
Disable compression from occurring on Servlet communication. This property only affects the
outbound HTTP traffic streamed by the PullServlet and PushServlet. [Default: false]

compression.level
Set the compression level this node will use when compressing synchronization payloads. Valid
values include: NO_COMPRESSION = 0, BEST_SPEED = 1, BEST_COMPRESSION = 9,
DEFAULT_COMPRESSION = -1 [Default: -1]

compression.strategy
Set the compression strategy this node will use when compressing synchronization payloads. Valid
values include: FILTERED = 1, HUFFMAN_ONLY = 2, DEFAULT_STRATEGY = 0 [Default: 0]

stream.to.file.enabled
Save data to the file system before transporting it to the client or loading it to the database if the
number of bytes is past a certain threshold. This allows for better compression and better use of
database and network resources. Statistics in the batch tables will be more accurate if this is set to true
because each timed operation is independent of the others. [Default: true]

stream.to.file.threshold.bytes
If stream.to.file.enabled is true, then the threshold number of bytes at which a file will be written is
controlled by this property. Note that for a synchronization the entire payload of the synchronization
will be buffered in memory up to this number (at which point it will be written and continue to stream
to disk) [Default: 32767]

job.random.max.start.time.ms
When starting jobs, symmetric attempts to randomize the start time to spread out load. This is the
maximum wait period before starting a job. [Default: 10000]

Parameters

Symmetric DS v2.2 94

purge.retention.minutes
This is the retention for how long synchronization data will be kept in the SymmetricDS
synchronization tables. Note that data will be purged only if the purge job is enabled. [Default: 7200]

statistic.retention.minutes
This is the retention for how long statistic data will be kept in the SymmetricDS staistic table. Note
that data will be purged only if the purge job is enabled. [Default: 7200]

job.route.period.time.ms
This is how often the route job will be run. [Default: 10000]

job.push.period.time.ms
This is how often the push job will be run. [Default: 60000]

job.pull.period.time.ms
This is how often the pull job will be run. [Default: 60000]

job.synctriggers.aftermidnight.minutes
If scheduled, the sync triggers job will run nightly. This is how long after midnight that job will run.
[Default: 15]

schema.version
This is hook to give the user a mechanism to indicate the schema version that is being synchronized.
This property is only valid if you use the default IRuntimeConfiguration implementation.
[Default: ?]

registration.url
The URL where this node can connect for registration to receive its configuration. This property is
only valid if you use the default IRuntimeConfiguration implementation. [Default:]

sync.url
The URL where this node can be contacting for synchronization.
[Default: http://localhost:8080/sync]

group.id
The node group id for this node. [Default: default]

external.id
The secondary identifier for this node that has meaning to the system where it is deployed. While the
node id is a generated sequence number, the external ID could have meaning in the user's domain,
such as a retail store number. [Default:]

transport.type
Specify the transport type. Supported values currently include: http, internal. [Default: http]

hsqldb.initialize.db
If using the HsqlDbDialect, this property indicates whether Symmetric should setup the embedded
database properties or if an external application will be doing so. [Default: true]

Parameters

Symmetric DS v2.2 95

Appendix C. Database Notes
Each database management system has its own characteristics that results in feature coverage in
SymmetricDS. The following table shows which features are available by database.

Table C.1. Support by Database

Database Versions
supported

Transaction
Identifier

Fallback
Update

Conditional
Sync

Update Loop
Prevention

BLOB Sync

Oracle 8.1.7 and above Y Y Y Y Y

MySQL 5.0.2 and above Y Y Y Y Y

PostgreSQL 8.2.5 and above Y (8.3 and
above only)

Y Y Y Y

SQL Server 2005 Y Y Y Y Y

HSQLDB 1.8 Y Y Y Y Y

HSQLDB 2.0 N Y Y Y Y

H2 1.x Y Y Y Y Y

Apache Derby 10.3.2.1 Y Y Y Y Y

IBM DB2 9.5 N Y Y Y Y

Firebird 2.0 Y Y Y Y Y

Informix 11 N Y Y Y N

C.1. Oracle

On Oracle Real Application Clusters (RAC), sequences should be ordered so data is processed in the
correct order. To offset the performance cost of ordering, the sequences should also be cached.

alter sequence SEQ_SYM_DATA_DATA_ID cache 1000 order;
alter sequence SEQ_SYM_OUTGOIN_BATCH_BATCH_ID cache 1000 order;
alter sequence SEQ_SYM_TRIGGER_RIGGER_HIST_ID cache 1000 order;
alter sequence SEQ_SYM_TRIGGER_TRIGGER_ID cache 1000 order;

While BLOBs are supported on Oracle, the LONG data type is not. LONG columns cannot be accessed
from triggers.

Note that while Oracle supports multiple triggers of the same type to be defined, the order in which the
triggers occur appears to be arbitrary.

The SymmetricDS user generally needs privileges for connecting and creating tables (including indexes),

Symmetric DS v2.2 96

triggers, sequences, and procedures (including packages and functions). The following is an example of
the needed grant statements:

GRANT CONNECT TO SYMMETRIC;
GRANT RESOURCE TO SYMMETRIC;
GRANT CREATE ANY TRIGGER TO SYMMETRIC;
GRANT EXECUTE ON UTL_RAW TO SYMMETRIC;

Partitioning the DATA table by channel can help insert, routing and extraction performance on
concurrent, high throughput systems. TRIGGERs should be organized to put data that is expected to be
inserted concurrently on separate CHANNELs. The following is an example of partitioning. Note that
both the table and the index should be partitioned. The default value allows for more channels to be added
without having to modify the partitions.

CREATE TABLE SYM_DATA
(

data_id INTEGER NOT NULL ,
table_name VARCHAR2(50) NOT NULL,
event_type CHAR(1) NOT NULL,
row_data CLOB,
pk_data CLOB,
old_data CLOB,
trigger_hist_id INTEGER NOT NULL,
channel_id VARCHAR2(20),
transaction_id VARCHAR2(1000),
source_node_id VARCHAR2(50),
external_data VARCHAR2(50),
create_time TIMESTAMP

) PARTITION BY LIST (channel_id) (
PARTITION P_CONFIG VALUES ('config'),
PARTITION P_CHANNEL_ONE VALUES ('channel_one'),
PARTITION P_CHANNEL_TWO VALUES ('channel_two'),
...
PARTITION P_CHANNEL_N VALUES ('channel_n'),
PARTITION P_DEFAULT VALUES (DEFAULT));

CREATE UNIQUE INDEX IDX_D_CHANNEL_ID ON SYM_DATA (DATA_ID, CHANNEL_ID) LOCAL
(
PARTITION I_CONFIG,
PARTITION I_CHANNEL_ONE,
PARTITION I_CHANNEL_TWO,
...
PARTITION I_CHANNEL_N,
PARTITION I_DEFAULT
);

C.2. MySQL

Database Notes

Symmetric DS v2.2 97

MySQL supports several storage engines for different table types. SymmetricDS requires a storage engine
that handles transaction-safe tables. The recommended storage engine is InnoDB, which is included by
default in MySQL 5.0 distributions. Either select the InnoDB engine during installation or modify your
server configuration. To make InnoDB the default storage engine, modify your MySQL server
configuration file (my.ini on Windows, my.cnf on Unix):

default-storage_engine = innodb

Alternatively, you can convert tables to the InnoDB storage engine with the following command:

alter table t engine = innodb;

On MySQL 5.0, the SymmetricDS user needs the SUPER privilege in order to create triggers.

grant super on *.* to symmetric;

On MySQL 5.1, the SymmetricDS user needs the TRIGGER and CREATE ROUTINE privileges in order
to create triggers and functions.

grant trigger on *.* to symmetric;

grant create routine on *.* to symmetric;

C.3. PostgreSQL

Starting with PostgreSQL 8.3, SymmetricDS supports the transaction identifier. Binary Large Object
(BLOB) replication is supported for both byte array (BYTEA) and object ID (OID) data types.

In order to function properly, SymmetricDS needs to use session variables. On PostgreSQL, session
variables are enabled using a custom variable class. Add the following line to the postgresql.conf file of
PostgreSQL server:

custom_variable_classes = 'symmetric'

This setting is required, and SymmetricDS will log an error and exit if it is not present.

Before database triggers can be created by in PostgreSQL, the plpgsql language handler must be installed
on the database. The following statements should be run by the administrator on the database:

CREATE FUNCTION plpgsql_call_handler() RETURNS language_handler AS
'$libdir/plpgsql' LANGUAGE C;

CREATE FUNCTION plpgsql_validator(oid) RETURNS void AS
'$libdir/plpgsql' LANGUAGE C;

Database Notes

Symmetric DS v2.2 98

CREATE TRUSTED PROCEDURAL LANGUAGE plpgsql
HANDLER plpgsql_call_handler
VALIDATOR plpgsql_validator;

C.4. MS SQL Server

SQL Server was tested using the jTDS JDBC driver.

C.5. HSQLDB

HSQLDB was implemented with the intention that the database be run embedded in the same JVM
process as SymmetricDS. Instead of dynamically generating static SQL-based triggers like the other
databases, HSQLDB triggers are Java classes that re-use existing SymmetricDS services to read the
configuration and insert data events accordingly.

The transaction identifier support is based on SQL events that happen in a 'window' of time. The
trigger(s) track when the last trigger fired. If a trigger fired within X milliseconds of the previous firing,
then the current event gets the same transaction identifier as the last. If the time window has passed, then
a new transaction identifier is generated.

C.6. H2

The H2 database allows only Java-based triggers. Therefore the H2 dialect requires that the SymmetricDS
jar file be in the database's classpath.

C.7. Apache Derby

The Derby database can be run as an embedded database that is accessed by an application or a
standalone server that can be accessed from the network. This dialect implementation creates database
triggers that make method calls into Java classes. This means that the supporting JAR files need to be in
the classpath when running Derby as a standalone database, which includes symmetric-ds.jar and
commons-lang.jar.

C.8. IBM DB2

The DB2 Dialect uses global variables to enable and disable node and trigger synchronization. These
variables are created automatically during the first startup. The DB2 JDBC driver should be placed in the
"lib" folder.

Currently, the DB2 Dialect for SymmetricDS does not provide support for transactional synchronization.
Large objects (LOB) are supported, but are limited to 16,336 bytes in size. The current features in the

Database Notes

Symmetric DS v2.2 99

http://jtds.sourceforge.net/

DB2 Dialect have been tested using DB2 9.5 on Linux and Windows operating systems.

There is currently a bug with the retrieval of auto increment columns with the DB2 9.5 JDBC drivers that
causes some of the SymmetricDS configuration tables to be rebuilt when auto.config.database=true. The
DB2 9.7 JDBC drivers seem to have fixed the issue. They may be used with the 9.5 database.

A system temporary tablespace with too small of a page size may cause the following trigger build errors:

SQL1424N Too many references to transition variables and transition table
columns or the row length for these references is too long. Reason
code="2". LINE NUMBER=1. SQLSTATE=54040

Simply create a system temporary tablespace that has a bigger page size. A page size of 8k will probably
suffice.

C.9. Firebird

The Firebird Dialect requires the installation of a User Defined Function (UDF) library in order to
provide functionality needed by the database triggers. SymmetricDS includes the required UDF library,
called SYM_UDF, in both source form (as a C program) and as pre-compiled libraries for both Windows
and Linux. The SYM_UDF library is copied into the UDF folder within the Firebird installation
directory.

For Linux users:

cp databases/firebird/sym_udf.so /opt/firebird/UDF

For Windows users:

copy databases\firebird\sym_udf.dll C:\Program Files\Firebird\Firebird_2_0\UDF

The Jaybird JDBC driver was used during testing, but the user must download the driver and place it in
the SymmetricDS "lib" folder.

The following limitations currently exist for this dialect:

• The outgoing batch does not honor the channel size, and all outstanding data events are included in
a batch.

• Syncing of Binary Large Object (BLOB) is limited to 16K bytes per column.
• Syncing of character data is limited to 32K bytes per column.

C.10. Informix

The Informix Dialect was tested against Informix Dynamic Server 11.50, but older versions may also
work. You need to download the Informix JDBC Driver (from the IBM Download Site) and put the

Database Notes

Symmetric DS v2.2 100

http://www.firebirdsql.org/index.php?op=devel&sub=jdbc
http://www-01.ibm.com/software/data/informix/downloads.html

ifxjdbc.jar and ifxlang.jar files in the SymmetricDS lib folder.

Make sure your database has logging enabled, which enables transaction support. Enable logging when
creating the database, like this:

CREATE DATABASE MYDB WITH LOG;

Or enable logging on an existing database, like this:

ondblog mydb unbuf log
ontape -s -L 0

The following features are not yet implemented:

• Syncing of Binary and Character Large Objects (LOB) is disabled.
• There is no transaction ID recorded on data captured, so it is possible for data to be committed

within different transactions on the target database. If transaction synchronization is required,
either specify a custom transaction ID or configure the synchronization so data is always sent in a
single batch. A custom transaction ID can be specified with the tx_id_expression on TRIGGER.
The batch size is controlled with the max_batch_size on CHANNEL. The pull and push jobs have
runtime properties to control their interval.

Database Notes

Symmetric DS v2.2 101

Appendix D. Data Format
The SymmetricDS Data Format is used to stream data from one node to another. The data format reader
and writer are pluggable with an initial implementation using a format based on Comma Separated
Values (CSV). Each line in the stream is a record with fields separated by commas. String fields are
surrounded with double quotes. Double quotes and backslashes used in a string field are escaped with a
backslash. Binary values are represented as a string with hex values in "\0xab" format. The absence of
any value in the field indicates a null value. Extra spacing is ignored and lines starting with a hash are
ignored.

The first field of each line gives the directive for the line. The following directives are used:

nodeid, {node_id}
Identifies which node the data is coming from. Occurs once in CSV file.

binary, {BASE64|NONE|HEX}
Identifies the type of decoding the loader needs to use to decode binary data in the pay load. This
varies depending on what database is the source of the data.

channel, {channel_id}
Identifies which channel a batch belongs to. The SymmetricDS data loader expects the channel to be
specified before the batch.

batch, {batch_id}
Uniquely identifies a batch. Used to track whether a batch has been loaded before. A batch of -9999 is
considered a virtual batch and will be loaded, but will not be recorded in incoming_batch.

schema, {schema name}
The name of the schema that is being targeted.

catalog, {catalog name}
The name of the catalog that is being targeted.

table, {table name}
The name of the table that is being targeted.

keys, {column name...}
Lists the column names that are used as the primary key for the table. Only needs to occur after the
first occurrence of the table.

columns, {column name...}
Lists all the column names (including key columns) of the table. Only needs to occur after the first
occurrence of the table.

insert, {column value...}
Insert into the table with the values that correspond with the columns.

update, {new column value...},{old key value...}
Update the table using the old key values to set the new column values.

Symmetric DS v2.2 102

old, {old column value...}
Represent all the old values of the data. This data can be used for conflict resolution.

delete, {old key value...}
Delete from the table using the old key values.

sql, {sql statement}
Optional notation that instructs the data loader to run the accompanying SQL statement.

bsh, {bsh script}
Optional notation that instructs the data loader to run the accompanying BeanShell snippet.

create, {xml}
Optional notation that instructs the data loader to run the accompanying DdlUtils XML table
definition in order to create a database table.

commit, {batch_id}
An indicator that the batch has been transmitted and the data can be committed to the database.

Example D.1. Data Format Stream

nodeid, 1001
channel, pricing
binary, BASE64
batch, 100
schema,
catalog,
table, item_selling_price
keys, price_id
columns, price_id, price, cost
insert, 55, 0.65, 0.55
schema,
catalog,
table, item
keys, item_id
columns, item_id, price_id, name
insert, 110000055, 55, "Soft Drink"
delete, 110000001
schema,
catalog,
table, item_selling_price
update, 55, 0.75, 0.65, 55
commit, 100

Data Format

Symmetric DS v2.2 103

http://www.beanshell.org/
http://db.apache.org/ddlutils/

Appendix E. Version Numbering
The software is released with a version number based on the Apache Portable Runtime Project version
guidelines. In summary, the version is denoted as three integers in the format of
MAJOR.MINOR.PATCH. Major versions are incompatible at the API level, and they can include any
kind of change. Minor versions are compatible with older versions at the API and binary level, and they
can introduce new functions or remove old ones. Patch versions are perfectly compatible, and they are
released to fix defects.

Symmetric DS v2.2 104

http://apr.apache.org/versioning.html

	SymmetricDS 2 User Guide
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. What is SymmetricDS?
	1.2. Background
	1.3. SymmetricDS Features
	1.3.1. Notification Schemes
	1.3.2. Two-Way Table Synchronization
	1.3.3. Data Channels
	1.3.4. Transaction Awareness
	1.3.5. Data Filtering and Rerouting
	1.3.6. HTTP(S) Transport
	1.3.7. Remote Management

	1.4. System Requirements
	1.5. What's new in SymmetricDS 2

	Chapter 2. Hands-on Tutorial
	2.1. Installing SymmetricDS
	2.2. Creating and Populating Your Databases
	2.3. Starting SymmetricDS
	2.4. Registering a Node
	2.5. Sending an Initial Load
	2.6. Pulling Data
	2.7. Pushing Data
	2.8. Verifying Outgoing Batches
	2.9. Verifying Incoming Batches

	Chapter 3. Planning an Implementation
	3.1. Identifying Nodes
	3.2. Organizing Nodes
	3.3. Defining Node Groups
	3.4. Linking Nodes
	3.5. Choosing Data Channels
	3.6. Defining Data Changes to be Captured and Routed
	3.6.1. Defining Triggers
	3.6.2. Defining Routers
	3.6.3. Mapping Triggers to Routers
	3.6.3.1. Planning Initial Loads
	3.6.3.2. Circular References and "Ping Back"

	3.6.4. Planning for Registering Nodes

	Chapter 4. Configuration
	4.1. Node Properties
	4.2. Node
	4.3. Node Group
	4.4. Node Group Link
	4.5. Channel
	4.6. Triggers and Routers
	4.6.1. Trigger
	4.6.2. Router
	4.6.2.1. Default Router
	4.6.2.2. Column Match Router
	4.6.2.3. Lookup Table Router
	4.6.2.4. Relational Router
	4.6.2.5. Scripted Router

	4.6.3. Trigger / Router Mappings
	4.6.3.1. Initial Load
	4.6.3.2. Dead Triggers
	4.6.3.3. Enabling "Ping Back"

	4.7. Opening Registration

	Chapter 5. Advanced Topics
	5.1. Advanced Synchronization
	5.1.1. Bi-Directional Synchronization
	5.1.2. Multi-Tiered Synchronization
	5.1.2.1. Registration Redirect

	5.2. Jobs
	5.2.1. Route Job
	5.2.1.1. Overview
	5.2.1.2. Data Gaps

	5.2.2. Controlling Synchronization Frequency
	5.2.3. Sync Triggers Job

	5.3. JMS Publishing
	5.4. Deployment Options
	5.4.1. Web Archive
	5.4.2. Standalone
	5.4.3. Embedded

	5.5. Running SymmetricDS as a Service
	5.5.1. Running as a Windows Service
	5.5.2. Running as a *nix Service

	5.6. Clustering
	5.7. Encrypted Passwords
	5.8. Secure Transport
	5.8.1. Sym Launcher
	5.8.2. Tomcat
	5.8.3. Keystores
	5.8.4. Generating Keys

	5.9. Basic Authentication
	5.10. IP Filtering
	5.10.1. CIDR Filter
	5.10.2. Literal Filter
	5.10.3. Wildcarding
	5.10.4. Range Filters
	5.10.5. Inner workings
	5.10.6. Configuration

	Chapter 6. Extending SymmetricDS
	6.1. IParameterFilter
	6.2. IDataLoaderFilter
	6.3. ITableColumnFilter
	6.4. IBatchListener
	6.5. IAcknowledgeEventListener
	6.6. IReloadListener
	6.7. IExtractorFilter
	6.8. ISyncUrlExtension
	6.9. INodeIdGenerator
	6.10. ITriggerCreationListener
	6.11. IBatchAlgorithm
	6.12. IDataRouter
	6.13. IHeartbeatListener
	6.14. IOfflineClientListener
	6.15. IOfflineServerListener
	6.16. INodePasswordFilter
	6.17. IServletExtension

	Chapter 7. Administration
	7.1. Solving Synchronization Issues
	7.1.1. Analyzing the Issue
	7.1.2. Resolving the Issue

	7.2. Changing Triggers
	7.3. Changing Configuration
	7.4. Logging Configuration
	7.5. Java Management Extensions
	7.6. Temporary Files
	7.7. Database Purging

	Appendix A. Data Model
	A.1. NODE
	A.2. NODE_SECURITY
	A.3. NODE_IDENTITY
	A.4. NODE_GROUP
	A.5. NODE_GROUP_LINK
	A.6. NODE_HOST
	A.7. NODE_HOST_CHANNEL_STATS
	A.8. NODE_HOST_STATS
	A.9. NODE_HOST_JOB_STATS
	A.10. CHANNEL
	A.11. NODE_CHANNEL_CTL
	A.12. NODE_GROUP_CHANNEL_WINDOW
	A.13. TRIGGER
	A.14. ROUTER
	A.15. TRIGGER_ROUTER
	A.16. PARAMETER
	A.17. REGISTRATION_REDIRECT
	A.18. REGISTRATION_REQUEST
	A.19. TRIGGER_HIST
	A.20. DATA
	A.21. DATA_REF
	A.22. DATA_GAP
	A.23. DATA_EVENT
	A.24. OUTGOING_BATCH
	A.25. INCOMING_BATCH
	A.26. LOCK

	Appendix B. Parameters
	B.1. Startup Parameters
	B.2. Runtime Parameters

	Appendix C. Database Notes
	C.1. Oracle
	C.2. MySQL
	C.3. PostgreSQL
	C.4. MS SQL Server
	C.5. HSQLDB
	C.6. H2
	C.7. Apache Derby
	C.8. IBM DB2
	C.9. Firebird
	C.10. Informix

	Appendix D. Data Format
	Appendix E. Version Numbering

